



ANEJO Nº 14 - CÁLCULOS ESTRUCTURALES



# <u>ÍNDICE</u>

| 1. | INTE | RODUCCIÓN1                                                         | L |
|----|------|--------------------------------------------------------------------|---|
| 2. | DES  | CRIPCIÓN DE LAS OBRAS1                                             | L |
|    | 2.1  | ESTRUCTURAS SOMETIDAS A CÁLCULO                                    | L |
|    | 2.2  | ESTRUCTURAS QUE NO HAN SIDO SOMETIDAS A CÁLCULO                    | Ĺ |
| 3. | BAS  | ES DE CÁLCULO GENERALES                                            | L |
|    | 3.1  | SOFTWARE UTILIZADO                                                 | L |
|    | 3.2  | NORMAS DE CÁLCULO                                                  | Ĺ |
|    | 3.3  | VIDA ÚTIL                                                          | L |
|    | 3.4  | MODELO DE CÁLCULO UTILIZADO                                        | L |
| 4. | EDIF | FICIO DE CONTROL                                                   | 3 |
|    | 4.1  | ACCIONES                                                           | 3 |
|    | 4.2  | SITUACIONES DE PROYECTO                                            | 1 |
|    | 4.3  | DURABILIDAD                                                        | 3 |
|    | 4.4  | CONDICIONANTES GEOTÉCNICOS                                         | ) |
|    | 4.5  | RESULTADOS DEL CÁLCULO                                             | ) |
| 5. | ARQ  | QUETA DE BOMBEO PARA IMPULSIÓN DE ALIMENTACIÓN A 1ª ETAPA HAFSSV10 | ) |
|    | 5.1  | ACCIONES                                                           | ) |
|    | 5.2  | SITUACIONES DE PROYECTO                                            | L |
|    | 5.3  | DURABILIDAD                                                        | 2 |
|    | 5.4  | CONDICIONANTES GEOTÉCNICOS                                         | 3 |
|    | 5.5  | RESULTADOS DEL CÁLCULO                                             | 3 |



**M**aima

# 1. INTRODUCCIÓN

El presente anejo se dedica al estudio de las principales estructuras de "PROYECTO DE CONSTRUCCIÓN DE AGRUPACIÓN DE VERTIDOS Y E.D.A.R. DE ESCAÑUELA (JAÉN)".

# 2. DESCRIPCIÓN DE LAS OBRAS

La obra consiste en la ejecución de una estación depuradora de aguas residuales en el municipio de Escañuela, para la depuración de las aguas de saneamiento de dicho pueblo. La misma, se plantea como un sistema con depuración mediante humedales artificiales de flujo subsuperficial vertical. Previamente a dicho reactor se instalará un pretratamiento compacto prefabricado. Todas las estructuras principales están realizadas en hormigón.

# 2.1 ESTRUCTURAS SOMETIDAS A CÁLCULO

La estructura objeto de estudio es la correspondiente a:

- Edificio de control: Se trata de un edifico de hormigón en una planta, cimentación por losa apoyada sobre el terreno, pilares de hormigón y forjado de hormigón tipo losa.
- Arqueta de bombeo para impulsión de alimentación a 1ª etapa HAFSsV: Se trata de una arqueta de hormigón armado de planta cuadrada de 2,5 metros de lado interior y alzados de 2,85 metros.

# 2.2 ESTRUCTURAS QUE NO HAN SIDO SOMETIDAS A CÁLCULO

No se han estudiado las arquetas de hormigón, por no estar sometidas a esfuerzos exteriores importantes y estar dotadas de espesores y armado ampliamente testados, salvo la arqueta de bombeo citada en el apartado anterior. Puesto que la arqueta de bombeo para impulsión de alimentación a 2ª etapa posee las mismas características que la arqueta de bombeo para la 1ª etapa, pero con alzados menores (2,55 metros), se considera suficiente con calcular la primera de ellas.

Para los pozos de registro circulares de hormigón prefabricado y las arquetas en superficie tampoco se ha considerado necesario su cálculo comprobación frente a solicitaciones externas.

# 3. BASES DE CÁLCULO GENERALES

#### 3.1 SOFTWARE UTILIZADO

Se ha procedido a la utilización de la aplicación CYPECAD versión 2017 de la empresa CYPE con nº de licencia 145112.

# 3.2 NORMAS DE CÁLCULO

Acciones: CTE DB SE-AE Viento: CTF DB SF-AF

Sismo: NCSE-02 Hormigón: EHE-08

Otras: CTE DB SE-C

# 3.3 VIDA ÚTIL

La vida útil propuesta para todas las estructuras es de 50 años.

# 3.4 MODELO DE CÁLCULO UTILIZADO

#### 3.4.1 CRITERIOS DE ARMADO

Los criterios considerados en el armado siguen las especificaciones de la Instrucción EHE-08, ajustándose los valores de cálculo de los materiales, los coeficientes de mayoración de cargas, las disposiciones de armaduras y las cuantías geométricas y mecánicas mínimas y máximas a dichas especificaciones. El método de cálculo es el denominado por la Norma como de los "estados límite". Se han efectuado las siguientes comprobaciones:

# 3.4.1.1 ESTADO LÍMITE DE EQUILIBRIO (ARTÍCULO 41º)

Se comprueba que en todos los nudos deben igualarse las cargas aplicadas con los esfuerzos de las barras.

# 3.4.1.2 ESTADO LÍMITE DE AGOTAMIENTO FRENTE A SOLICITACIONES NORMALES (ARTÍCULO 42º)

Se comprueban a rotura las barras sometidas a flexión y axil debidos a las cargas mayoradas. Se consideran las excentricidades mínimas de la carga en dos direcciones (no simultáneas), en el cálculo de pilares.



**p**aima

# 3.4.1.3 ESTADO LÍMITE DE INESTABILIDAD (ARTÍCULO 43º)

Se realiza de forma opcional la comprobación del efecto del pandeo en los pilares de acuerdo con el artículo 43.5.2 (Estado Límite de Inestabilidad / Comprobación de soportes aislados / Método aproximado) de la norma EHE-08. Se define para cada pilar y en cada uno de sus ejes principales independientemente: si se desea realizar la comprobación de pandeo, se desea considerar la estructura traslacional, intraslacional o se desea fijar su factor de longitud de pandeo (factor que al multiplicarlo por la longitud del pilar se obtiene la longitud de pandeo). Pueden definirse diferentes hipótesis de traslacionalidad y de intraslacionalidad para las combinaciones de 1º orden y para las combinaciones de 2º orden.

Si se fija el factor de longitud de pandeo de un pilar, se considerará que para ese pilar la estructura es traslacional cuando a sea mayor o igual que 1, e intraslacional en caso contrario.

Si la esbeltez de un soporte en una dirección es menor de la esbeltez inferior establecida en el Artículo 43.1.2 de la Instrucción EHE-08, no se comprueba este estado límite en dicha dirección.

# 3.4.1.4 ESTADO LÍMITE DE AGOTAMIENTO FRENTE A CORTANTE (ARTÍCULO 44º)

Se comprueba la resistencia del hormigón, las armaduras longitudinales y las transversales frente a las solicitaciones tangentes de cortante producidas por las cargas mayoradas.

# 3.4.1.5 ESTADO LÍMITE DE AGOTAMIENTO POR TORSIÓN (ARTÍCULO 45°)

Se comprueba la resistencia del hormigón, las armaduras longitudinales y las transversales frente a las solicitaciones normales y tangenciales de torsión producidas en las barras por las cargas mayoradas. También se comprueban los efectos combinados de la torsión con la flexión y el cortante.

# 3.4.1.6 ESTADO LÍMITE DE PUNZONAMIENTO (ARTÍCULO 46°)

Se comprueba la resistencia a punzonamiento en zapatas, forjados reticulares, losas de forjado y losas de cimentación producido en la transmisión de solicitaciones a los o por los pilares. No se realiza la comprobación de punzonamiento entre vigas y pilares.

# 3.4.1.7 ESTADO LÍMITE DE FISURACIÓN (ARTÍCULO 49º)

Se calcula la máxima fisura de las barras sometidas a las combinaciones cuasi-permanentes de las cargas introducidas en las distintas hipótesis.

# 3.4.1.8 ESTADO LÍMITE DE DEFORMACIÓN (ARTÍCULO 50°)

Se calcula la deformación de las barras sometidas a las combinaciones correspondientes a los estados límite de servicio de las cargas introducidas en las distintas hipótesis de carga. El valor de la inercia de la sección considerada es un valor intermedio entre el de la sección sin fisurar y la sección fisurada (fórmula de Branson). Los valores de las flechas calculadas corresponden a las flechas activas o totales (según se establezca en las opciones), habiéndose tenido en cuenta para su determinación el proceso constructivo del edificio.

#### 3.4.2 CONSIDERACIONES SOBRE EL ARMADO DE SECCIONES

Se ha considerado un diagrama rectangular de respuesta de las secciones, asimilable al diagrama parábola-rectángulo, pero limitando la profundidad de la línea neutra en el caso de flexión simple.

#### 3.4.2.1 ARMADURA LONGITUDINAL DE MONTAJE

En el armado longitudinal de vigas y diagonales se han dispuesto unas armaduras repartidas en un máximo de dos filas de redondos, estando los redondos separados entre sí según las especificaciones de la Norma: 2 cm. si el diámetro del redondo es menor de 20 mm. y un diámetro si es mayor. No se consideran grupos de barras. En cualquier caso, la armadura de montaje de vigas puede ser considerada a los efectos resistentes.

En el armado longitudinal de pilares se han dispuesto unas armaduras repartidas como máximo en una fila de redondos, de igual diámetro, y, opcionalmente, con armadura simétrica en sus cuatro caras para el caso de secciones rectangulares. En el caso de secciones rectangulares, se permite que el diámetro de las esquinas sea mayor que el de las caras. Se considera una excentricidad mínima que es el valor mayor de 20 mm o 1/20 del lado de la sección, en cada uno de los ejes principales de la sección, aunque no de forma simultánea. La armadura se ha determinado considerando un estado de flexión esviada, comprobando que la respuesta real de la sección de hormigón más acero es menor que las diferentes combinaciones de solicitaciones que actúan sobre la sección. La cuantía de la armadura longitudinal de los pilares será, al menos, la fijada por la Norma: un 4% del área de la sección de hormigón.

**D**aima

#### 3.4.2.2 ARMADURA TRANSVERSAL

En el armado transversal de vigas y diagonales se ha considerado el armado mínimo transversal como la suma de la resistencia a cortante del hormigón y de la resistencia del área de los cercos de acero, que cumplan las condiciones geométricas mínimas de la Norma EHE-08 y los criterios constructivos especificados por la Norma NCSE-94. Las separaciones entre estribos varían en función de los cortantes encontrados a lo largo de las barras.

En el armado transversal de pilares se ha considerado el armado mínimo transversal con las mismas condiciones expuestas para las vigas. Se ha calculado una única separación entre cercos para toda la longitud de los pilares, y en el caso de que sean de aplicación los criterios constructivos especificados por la Norma NCSE-94 se calculan tres zonas de estribado diferenciadas.

Siempre se determina que los cercos formen un ángulo de 90° con la directriz de las barras. Así mismo, siempre se considera que las bielas de hormigón forman 45° con la directriz de las barras. Se considera una tensión máxima de trabajo de la armadura transversal de 400 MPa.

Conforme a EHE-08, se comprueba el no agotamiento del hormigón y se calcula el armado transversal necesario para resistir los momentos torsores de vigas y pilares. También se comprueba la resistencia conjunta de los esfuerzos de cortante más torsión y de flexión más torsión.

# 4. EDIFICIO DE CONTROL

El edificio de control se diseña como estructura de hormigón armada. La estructura se compone de cimentación superficial a base de losa de cimentación, los soportes serán a base de pilares de hormigón, que transmitirán las cargas recibidas por las vigas de cargas, provenientes del forjado de hormigón superior.

El edificio se dispone en una única planta, de dimensiones 6,5 x 4 m de superficie y 3 m de altura. El forjado transmitirá las cargas a seis pilares cuadrados de hormigón de 30x30 cm. La cimentación se realizará mediante losa de cimentación de hormigón de 30 cm de canto.

#### 4.1 ACCIONES

#### 4.1.1 GRAVITATORIAS

| Planta      | S.C.U<br>(t/m²) | Cargas muertas<br>(t/m²) |
|-------------|-----------------|--------------------------|
| Forjado 1   | 0,20            | 0,20                     |
| Cimentación | 0,20            | 0,20                     |

#### 4.1.2 VIENTO

CTE DB SE-AE

Código Técnico de la Edificación.

Documento Básico Seguridad Estructural - Acciones en la Edificación

Zona eólica: A

Grado de aspereza: II. Terreno rural llano sin obstáculos

La acción del viento se calcula a partir de la presión estática q<sub>e</sub> que actúa en la dirección perpendicular a la superficie expuesta. El programa obtiene de forma automática dicha presión, conforme a los criterios del Código Técnico de la Edificación DB-SE AE, en función de la geometría del edificio, la zona eólica y grado de aspereza seleccionados, y la altura sobre el terreno del punto considerado:

$$q_e = q_b \cdot c_e \cdot c_p$$

Donde:

q₀ Es la presión dinámica del viento conforme al mapa eólico del Anejo D.

c<sub>e</sub> Es el coeficiente de exposición, determinado conforme a las especificaciones del Anejo D.2, en función del grado de aspereza del entorno y la altura sobre el terreno del punto considerado.

c<sub>p</sub> Es el coeficiente eólico o de presión, calculado según la tabla 3.5 del apartado 3.3.4, en función de la esbeltez del edificio en el plano paralelo al viento.

|              |          | Viento X     |              |          | Viento Y     |              |
|--------------|----------|--------------|--------------|----------|--------------|--------------|
| qb<br>(t/m²) | esbeltez | cp (presión) | cp (succión) | esbeltez | cp (presión) | cp (succión) |
| 0.043        | 0.81     | 0.80         | -0.43        | 0.50     | 0.70         | -0.40        |





| Presión estática |                       |                    |                    |  |  |  |  |
|------------------|-----------------------|--------------------|--------------------|--|--|--|--|
| Planta           | Ce (Coef. exposición) | Viento X<br>(t/m²) | Viento Y<br>(t/m²) |  |  |  |  |
| Forjado 1        | 2.14                  | 0.112              | 0.101              |  |  |  |  |

| Anchos de banda      |                         |                         |  |  |  |  |
|----------------------|-------------------------|-------------------------|--|--|--|--|
| Plantas              | Ancho de banda Y<br>(m) | Ancho de banda X<br>(m) |  |  |  |  |
| En todas las plantas | 6,5                     | 4                       |  |  |  |  |

Se realiza análisis de los efectos de 2º orden

Valor para multiplicar los desplazamientos 1.00

Coeficientes de Cargas

+X: 1.00 -X:1.00

+Y: 1.00 -Y:1.00

|           | Cargas de viento |                 |
|-----------|------------------|-----------------|
| Planta    | Viento X<br>(t)  | Viento Y<br>(t) |
| Forjado 1 | 1.184            | 0.654           |

Conforme al artículo 3.3.2., apartado 2 del Documento Básico AE, se ha considerado que las fuerzas de viento por planta, en cada dirección del análisis, actúan con una excentricidad de  $\pm 5\%$  de la dimensión máxima del edificio.

#### 4.1.3 SISMO

Norma utilizada: NCSE-02

Norma de Construcción Sismorresistente NCSE-02

Método de cálculo: Análisis mediante espectros de respuesta (NCSE-02, 3.6.2)

# **DATOS GENERALES SISMO**

Caracterización del emplazamiento

a<sub>b</sub>: Aceleración básica (NCSE-02, 2.1 y Anejo 1)

K: Coeficiente de contribución (NCSE-02, 2.1 y Anejo 1)

Tipo de suelo (NCSE-02, 2.4): Tipo II

**a**<sub>b</sub>: 0.060 g **K**: 1.00 Sistema estructural

Ductilidad (NCSE-02, Tabla 3.1): Ductilidad baja

W: Amortiguamiento (NCSE-02, Tabla 3.1)

: 5.00 %

Tipo de construcción (NCSE-02, 2.2): Construcciones de importancia normal

Parámetros de cálculo

Número de modos

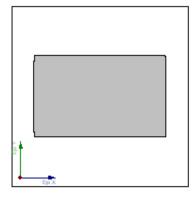
Fracción de sobrecarga de uso

Fracción de sobrecarga de nieve

: Según norma

1.00

: 0.50


No se realiza análisis de los efectos de 2º orden

Criterio de armado a aplicar por ductilidad: Ninguno

#### Direcciones de análisis

Acción sísmica según X

Acción sísmica según Y



# 4.2 SITUACIONES DE PROYECTO

Para las distintas situaciones de proyecto, las combinaciones de acciones se definirán de acuerdo con los siguientes criterios:



# - Situaciones persistentes o transitorias

- Con coeficientes de combinación

- Sin coeficientes de combinación

- Situaciones sísmicas
  - Con coeficientes de combinación
  - Sin coeficientes de combinación
- Donde:
- G<sub>k</sub> Acción permanente
- Q<sub>k</sub> Acción variable
- A<sub>E</sub> Acción sísmica
- g<sub>G</sub> Coeficiente parcial de seguridad de las acciones permanentes
- $g_{0,1}$  Coeficiente parcial de seguridad de la acción variable principal
- $g_{0,i}$  Coeficiente parcial de seguridad de las acciones variables de acompañamiento
- g<sub>AE</sub> Coeficiente parcial de seguridad de la acción sísmica
- y<sub>p,1</sub> Coeficiente de combinación de la acción variable principal
- y<sub>a,i</sub> Coeficiente de combinación de las acciones variables de acompañamiento

# 4.2.1 COEFICIENTES DE SEGURIDAD ADOPTADOS

#### 4.2.1.1 SOBRE LAS ACCIONES

Para cada situación de proyecto y estado límite los coeficientes a utilizar serán:

#### E.L.U. de rotura. Hormigón: EHE-08

#### E.L.U. de rotura. Hormigón en cimentaciones: EHE-08 / CTE DB-SE C

| Persistente o transitoria                                               |           |              |                        |                                  |  |
|-------------------------------------------------------------------------|-----------|--------------|------------------------|----------------------------------|--|
| Coeficientes parciales de seguridad (g)  Coeficientes de combinación (y |           |              | tes de combinación (y) |                                  |  |
|                                                                         | Favorable | Desfavorable | Principal (yp)         | Acompañamiento (y <sub>a</sub> ) |  |
| Carga permanente (G)                                                    | 1.000     | 1.350        | -                      | =                                |  |
| Sobrecarga (Q)                                                          | 0.000     | 1.500        | 1.000                  | 0.700                            |  |
| Viento (Q)                                                              | 0.000     | 1.500        | 1.000                  | 0.600                            |  |

| Sísmica              |                   |                         |                                 |                     |  |
|----------------------|-------------------|-------------------------|---------------------------------|---------------------|--|
|                      | Coeficientes parc | ciales de seguridad (g) | Coeficientes de combinación (y) |                     |  |
|                      | Favorable         | Desfavorable            | Principal (y <sub>p</sub> )     | Acompañamiento (ya) |  |
| Carga permanente (G) | 1.000             | 1.000                   | -                               | -                   |  |
| Sobrecarga (Q)       | 0.000             | 1.000                   | 0.300                           | 0.300               |  |
| Viento (Q)           | 0.000             | 1.000                   | 0.000                           | 0.000               |  |
| Sismo (E)            | -1.000            | 1.000                   | 1.000                           | $0.300^{(1)}$       |  |
| Notas:               |                   |                         |                                 |                     |  |

#### Tensiones sobre el terreno

| Característica                                                          |           |              |                |                                  |  |
|-------------------------------------------------------------------------|-----------|--------------|----------------|----------------------------------|--|
| Coeficientes parciales de seguridad (g) Coeficientes de combinación (y) |           |              |                | tes de combinación (y)           |  |
|                                                                         | Favorable | Desfavorable | Principal (yp) | Acompañamiento (y <sub>a</sub> ) |  |
| Carga permanente (G)                                                    | 1.000     | 1.000        | -              | =                                |  |
| Sobrecarga (Q)                                                          | 0.000     | 1.000        | 1.000          | 1.000                            |  |
| Viento (Q)                                                              | 0.000     | 1.000        | 1.000          | 1.000                            |  |

| Sísmica                                                                 |           |              |                             |                                  |  |
|-------------------------------------------------------------------------|-----------|--------------|-----------------------------|----------------------------------|--|
| Coeficientes parciales de seguridad (g) Coeficientes de combinación (y) |           |              |                             |                                  |  |
|                                                                         | Favorable | Desfavorable | Principal (y <sub>p</sub> ) | Acompañamiento (y <sub>a</sub> ) |  |
| Carga permanente (G)                                                    | 1.000     | 1.000        | -                           | =                                |  |
| Sobrecarga (Q)                                                          | 0.000     | 1.000        | 1.000                       | 1.000                            |  |
| Viento (Q)                                                              |           |              |                             |                                  |  |
| Sismo (E)                                                               | -1.000    | 1.000        | 1.000                       | 0.000                            |  |

#### Desplazamientos

| Característica       |                                                                         |              |                             |                                  |  |
|----------------------|-------------------------------------------------------------------------|--------------|-----------------------------|----------------------------------|--|
|                      | Coeficientes parciales de seguridad (g) Coeficientes de combinación (y) |              |                             | tes de combinación (y)           |  |
|                      | Favorable                                                               | Desfavorable | Principal (y <sub>p</sub> ) | Acompañamiento (y <sub>a</sub> ) |  |
| Carga permanente (G) | 1.000                                                                   | 1.000        | -                           | -                                |  |
| Sobrecarga (Q)       | 0.000                                                                   | 1.000        | 1.000                       | 1.000                            |  |
| Viento (Q)           | 0.000                                                                   | 1.000        | 1.000                       | 1.000                            |  |

<sup>&</sup>lt;sup>(1)</sup> Fracción de las solicitaciones sísmicas a considerar en la dirección ortogonal: Las solicitaciones obtenidas de los resultados del análisis en cada una de las direcciones ortogonales se combinarán con el 30 % de los de la otra.





| Sísmica              |                 |                          |                                 |                                  |  |
|----------------------|-----------------|--------------------------|---------------------------------|----------------------------------|--|
|                      | Coeficientes pa | rciales de seguridad (g) | Coeficientes de combinación (y) |                                  |  |
|                      | Favorable       | Desfavorable             | Principal (y <sub>p</sub> )     | Acompañamiento (y <sub>a</sub> ) |  |
| Carga permanente (G) | 1.000           | 1.000                    | -                               | -                                |  |
| Sobrecarga (Q)       | 0.000           | 1.000                    | 1.000                           | 1.000                            |  |
| Viento (Q)           |                 |                          |                                 |                                  |  |
| Sismo (E)            | -1.000          | 1.000                    | 1.000                           | 0.000                            |  |

# 4.2.1.2 SOBRE LOS MATERIALES

Según EHE-08.

| Situación de proyecto     | Hormigón<br>Ye | Acero pasivo y activo |
|---------------------------|----------------|-----------------------|
| Persistente o transitoria | 1,5            | 1,15                  |
| Accidental                | 1,3            | 1,0                   |

# 4.2.2 COMBINACIÓN DE ACCIONES

• Nombres de las hipótesis

PP Peso propio CM Cargas muertas Sobrecarga de uso Qa V(+X exc.+) Viento +X exc.+ V(+X exc.-) Viento +X exc.-

V(-X exc.+) Viento -X exc.+ V(-X exc.-) Viento -X exc.-

V(+Y exc.+) Viento +Y exc.+

V(+Y exc.-) Viento +Y exc.-

V(-Y exc.+) Viento -Y exc.+ V(-Y exc.-) Viento -Y exc.-

SX Sismo X SY Sismo Y

Categoría de uso

A. Zonas residenciales

• E.L.U. de rotura. Hormigón

CTE

Cota de nieve: Altitud inferior o igual a 1000 m

• E.L.U. de rotura. Hormigón en cimentaciones

Cota de nieve: Altitud inferior o igual a 1000 m
• E.L.U. de rotura. Pilares mixtos de hormigón y acero

Cota de nieve: Altitud inferior o igual a 1000 m

#### • E.L.U. de rotura. Aluminio

EC

Nieve: Altitud inferior o igual a 1000 m

| Comb. | PP    | CM    | Qa    | V(+X exc.+) | V(+X exc -) | V(-Y evc +)  | V(-X evc -) | V(+V evc +) | V(+V evc -) | V(-V evc +) | V(-V evc -) | SX     | SY       |
|-------|-------|-------|-------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|--------|----------|
| 1     | 1.000 |       | Qu    | V(TX CXC.T) | V(TX CXC.)  | V( X CXC. 1) | V( / C/C.)  | V(11 CXC.1) | V(11 CXC.)  | V( 1 CXC.1) | V( 1 CAC. ) | 37     | 31       |
| 2     | 1.350 |       |       |             |             |              |             |             |             |             |             |        |          |
| 3     |       | 1.000 | 1.500 |             |             |              |             |             |             |             |             |        |          |
| 4     |       | 1.350 |       |             |             |              |             |             |             |             |             |        |          |
| 5     | 1.000 |       | 1.500 | 1.500       |             |              |             |             |             |             |             |        |          |
| 6     | 1.350 |       |       | 1.500       |             |              |             |             |             |             |             |        |          |
| 7     |       | 1.000 | 1.050 | 1.500       |             |              |             |             |             |             |             |        |          |
| 8     |       | 1.350 |       | 1.500       |             |              |             |             |             |             |             |        |          |
| 9     |       | 1.000 |       | 0.900       |             |              |             |             |             |             |             |        |          |
| 10    |       | 1.350 |       | 0.900       |             |              |             |             |             |             |             |        |          |
| 11    | 1.000 | 1.000 |       |             | 1.500       |              |             |             |             |             |             |        |          |
| 12    | 1.350 | 1.350 |       |             | 1.500       |              |             |             |             |             |             |        |          |
| 13    | 1.000 | 1.000 | 1.050 |             | 1.500       |              |             |             |             |             |             |        |          |
| 14    |       | 1.350 |       |             | 1.500       |              |             |             |             |             |             |        |          |
| 15    | 1.000 | 1.000 | 1.500 |             | 0.900       |              |             |             |             |             |             |        |          |
| 16    | 1.350 | 1.350 | 1.500 |             | 0.900       |              |             |             |             |             |             |        |          |
| 17    | 1.000 | 1.000 |       |             |             | 1.500        |             |             |             |             |             |        |          |
| 18    | 1.350 | 1.350 |       |             |             | 1.500        |             |             |             |             |             |        |          |
| 19    | 1.000 | 1.000 | 1.050 |             |             | 1.500        |             |             |             |             |             |        |          |
| 20    | 1.350 | 1.350 | 1.050 |             |             | 1.500        |             |             |             |             |             |        |          |
| 21    |       | 1.000 |       |             |             | 0.900        |             |             |             |             |             |        |          |
| 22    | 1.350 | 1.350 | 1.500 |             |             | 0.900        |             |             |             |             |             |        |          |
| 23    | 1.000 | 1.000 |       |             |             |              | 1.500       |             |             |             |             |        |          |
| 24    | 1.350 | 1.350 |       |             |             |              | 1.500       |             |             |             |             |        |          |
| 25    | 1.000 | 1.000 | 1.050 |             |             |              | 1.500       |             |             |             |             |        |          |
| 26    | 1.350 | 1.350 | 1.050 |             |             |              | 1.500       |             |             |             |             |        |          |
| 27    | 1.000 | 1.000 | 1.500 |             |             |              | 0.900       |             |             |             |             |        |          |
| 28    | 1.350 | 1.350 | 1.500 |             |             |              | 0.900       |             |             |             |             |        |          |
| 29    | 1.000 | 1.000 |       |             |             |              |             | 1.500       |             |             |             |        |          |
| 30    | 1.350 | 1.350 |       |             |             |              |             | 1.500       |             |             |             |        |          |
| 31    | 1.000 | 1.000 | 1.050 |             |             |              |             | 1.500       |             |             |             |        |          |
| 32    | 1.350 | 1.350 | 1.050 |             |             |              |             | 1.500       |             |             |             |        |          |
| 33    | 1.000 | 1.000 | 1.500 |             |             |              |             | 0.900       |             |             |             |        |          |
| 34    | 1.350 | 1.350 | 1.500 |             |             |              |             | 0.900       |             |             |             |        |          |
| 35    | 1.000 | 1.000 |       |             |             |              |             |             | 1.500       |             |             |        |          |
| 36    | 1.350 | 1.350 |       |             |             |              |             |             | 1.500       |             |             |        |          |
| 37    | 1.000 | 1.000 | 1.050 |             |             |              |             |             | 1.500       |             |             |        |          |
| 38    | 1.350 | 1.350 | 1.050 |             |             |              |             |             | 1.500       |             |             |        |          |
| 39    | 1.000 | 1.000 | 1.500 |             |             |              |             |             | 0.900       |             |             |        |          |
| 40    | 1.350 | 1.350 | 1.500 |             |             |              |             |             | 0.900       |             |             |        |          |
| 41    | 1.000 | 1.000 |       |             |             |              |             |             |             | 1.500       |             |        |          |
| 42    | 1.350 |       |       |             |             |              |             |             |             | 1.500       |             |        |          |
| 43    | 1.000 | 1.000 | 1.050 |             |             |              |             |             |             | 1.500       |             |        |          |
| 44    |       | 1.350 |       |             |             |              |             |             |             | 1.500       |             |        |          |
| 45    | 1.000 |       |       |             |             |              |             |             |             | 0.900       |             |        |          |
| 46    | 1.350 |       | 1.500 |             |             |              |             |             |             | 0.900       |             |        |          |
| 47    | 1.000 |       |       |             |             |              |             |             |             |             | 1.500       |        |          |
| 48    | 1.350 |       |       |             |             |              |             |             |             |             | 1.500       |        | $\vdash$ |
| 49    | 1.000 |       |       |             |             |              |             |             |             |             | 1.500       |        |          |
| 50    | 1.350 |       |       |             |             |              |             |             |             |             | 1.500       |        |          |
| 51    |       | 1.000 |       |             |             |              |             |             |             |             | 0.900       |        |          |
| 52    |       | 1.350 | 1.500 |             |             |              |             |             |             |             | 0.900       | 0.5    | 4.5      |
| 53    | 1.000 |       | 0 -   |             |             |              |             |             |             |             |             |        | -1.000   |
| 54    |       | 1.000 | 0.300 |             |             |              |             |             |             |             |             |        | -1.000   |
| 55    | 1.000 |       | 0.55  |             |             |              |             |             |             |             |             |        | -1.000   |
| 56    |       | 1.000 | 0.300 |             |             |              |             |             |             |             |             |        | -1.000   |
| 57    | 1.000 |       | 0.5   |             |             |              |             |             |             |             |             |        | -0.300   |
| 58    |       | 1.000 | 0.300 |             |             |              |             |             |             |             |             |        | -0.300   |
| 59    |       | 1.000 | 0.5   |             |             |              |             |             |             |             |             | -1.000 |          |
| 60    |       | 1.000 | 0.300 |             |             |              |             |             |             |             |             | -1.000 |          |
| 61    | 1.000 |       | 0.200 |             |             |              |             |             |             |             |             | 0.300  |          |
| 62    |       | 1.000 | 0.300 |             |             |              |             |             |             |             |             | 0.300  | 1.000    |
| 63    | 1.000 |       | 0.200 |             |             |              |             |             |             |             |             | -0.300 |          |
| 64    | 1.000 | 1.000 | 0.300 |             |             |              |             |             |             |             |             | -0.300 | 1.000    |





| 65 | 1.000 1.000       |  |  |  |  | 1.000 | 0.300  |
|----|-------------------|--|--|--|--|-------|--------|
| 66 | 1.000 1.000 0.300 |  |  |  |  | 1.000 | 0.300  |
| 67 | 1.000 1.000       |  |  |  |  | 1.000 | -0.300 |
| 68 | 1.000 1.000 0.300 |  |  |  |  | 1.000 | -0.300 |

• E.L.U. de rotura. Acero conformado

AGENCIA DE MEDIO AMBIENTE Y AGUA DE ANDALUCÍA

CTE

Cota de nieve: Altitud inferior o igual a 1000 m

• E.L.U. de rotura. Acero laminado

CTE

Cota de nieve: Altitud inferior o igual a 1000 m

• E.L.U. de rotura. Madera

CTE

Cota de nieve: Altitud inferior o igual a 1000 m

1. Coeficientes para situaciones persistentes o transitorias y sísmicas

| Comb. | PP    | CM    | Qa    | V(+X exc.+)     | V(+X exc)   | V(-X exc.+)     | V(-X exc)     | V(+Y exc.+) | V(+Y exc)                | V(-Y exc.+) | V(-Y exc)   | SX | SY                                               |
|-------|-------|-------|-------|-----------------|-------------|-----------------|---------------|-------------|--------------------------|-------------|-------------|----|--------------------------------------------------|
| 1     | 0.800 | 0.800 | - Qu  | v( i / c/ci i ) | r( rx exer) | t ( /t c/tc// ) | T( // C/IC/ ) | T(TT CACTT) | v( · · · · · · · · · · ) | v( : cherry | T( : exe. ) |    |                                                  |
| 2     | 1.350 | 1.350 |       |                 |             |                 |               |             |                          |             |             |    |                                                  |
| 3     |       | 0.800 | 1.500 |                 |             |                 |               |             |                          |             |             |    |                                                  |
| 4     | 1.350 | 1.350 | 1.500 |                 |             |                 |               |             |                          |             |             |    |                                                  |
|       |       |       | 1.500 | 1 500           |             |                 |               |             |                          |             |             |    |                                                  |
| 5     | 0.800 | 0.800 |       | 1.500           |             |                 |               |             |                          |             |             |    |                                                  |
| 6     | 1.350 | 1.350 |       | 1.500           |             |                 |               |             |                          |             |             |    |                                                  |
| 7     | 0.800 | 0.800 | 1.050 | 1.500           |             |                 |               |             |                          |             |             |    | <b> </b>                                         |
| 8     | 1.350 | 1.350 | 1.050 | 1.500           |             |                 |               |             |                          |             |             |    | <del>                                     </del> |
| 9     | 0.800 | 0.800 | 1.500 | 0.900           |             |                 |               |             |                          |             |             |    | <b></b>                                          |
| 10    | 1.350 | 1.350 | 1.500 | 0.900           |             |                 |               |             |                          |             |             |    | <b></b>                                          |
| 11    |       | 0.800 |       |                 | 1.500       |                 |               |             |                          |             |             |    | ļ                                                |
| 12    | 1.350 | 1.350 |       |                 | 1.500       |                 |               |             |                          |             |             |    |                                                  |
| 13    | 0.800 | 0.800 | 1.050 |                 | 1.500       |                 |               |             |                          |             |             |    |                                                  |
| 14    | 1.350 | 1.350 | 1.050 |                 | 1.500       |                 |               |             |                          |             |             |    | L                                                |
| 15    | 0.800 | 0.800 | 1.500 |                 | 0.900       |                 |               |             |                          |             |             |    |                                                  |
| 16    | 1.350 | 1.350 | 1.500 |                 | 0.900       |                 |               |             |                          |             |             |    | <br>L                                            |
| 17    | 0.800 | 0.800 |       | -               | -           | 1.500           |               |             |                          |             |             |    |                                                  |
| 18    | 1.350 | 1.350 |       |                 |             | 1.500           |               |             |                          |             |             |    |                                                  |
| 19    | 0.800 | 0.800 | 1.050 |                 |             | 1.500           |               |             |                          |             |             |    |                                                  |
| 20    | 1.350 | 1.350 | 1.050 |                 |             | 1.500           |               |             |                          |             |             |    |                                                  |
| 21    | 0.800 | 0.800 | 1.500 |                 |             | 0.900           |               |             |                          |             |             |    |                                                  |
| 22    | 1.350 | 1.350 | 1.500 |                 |             | 0.900           |               |             |                          |             |             |    |                                                  |
| 23    | 0.800 | 0.800 | 1.500 |                 |             | 0.300           | 1.500         |             |                          |             |             |    |                                                  |
| 24    | 1.350 | 1.350 |       |                 |             |                 | 1.500         |             |                          |             |             |    |                                                  |
| 25    | 0.800 | 0.800 | 1.050 |                 |             |                 | 1.500         |             |                          |             |             |    |                                                  |
| 26    | 1.350 | 1.350 | 1.050 |                 |             |                 | 1.500         |             |                          |             |             |    |                                                  |
| 27    | 0.800 | 0.800 | 1.500 |                 |             |                 | 0.900         |             |                          |             |             |    |                                                  |
| I +   |       |       |       |                 |             |                 |               |             |                          |             |             |    |                                                  |
| 28    |       | 1.350 | 1.500 |                 |             |                 | 0.900         | 4 500       |                          |             |             |    | l                                                |
| 29    | 0.800 | 0.800 |       |                 |             |                 |               | 1.500       |                          |             |             |    |                                                  |
| 30    |       | 1.350 |       |                 |             |                 |               | 1.500       |                          |             |             |    |                                                  |
| 31    | 0.800 | 0.800 | 1.050 |                 |             |                 |               | 1.500       |                          |             |             |    | <b>-</b>                                         |
| 32    |       | 1.350 | 1.050 |                 |             |                 |               | 1.500       |                          |             |             |    | <b></b>                                          |
| 33    |       | 0.800 |       |                 |             |                 |               | 0.900       |                          |             |             |    | <b> </b>                                         |
| 34    |       | 1.350 | 1.500 |                 |             |                 |               | 0.900       |                          |             |             |    | <b></b>                                          |
| 35    |       | 0.800 |       |                 |             |                 |               |             | 1.500                    |             |             |    | <b></b>                                          |
| 36    | 1.350 | 1.350 |       |                 |             |                 |               |             | 1.500                    |             |             |    | ļ                                                |
| 37    | 0.800 | 0.800 | 1.050 |                 |             |                 |               |             | 1.500                    |             |             |    | ļ                                                |
| 38    | 1.350 | 1.350 | 1.050 |                 |             |                 |               |             | 1.500                    |             |             |    | L                                                |
| 39    | 0.800 | 0.800 | 1.500 |                 |             |                 |               |             | 0.900                    |             |             |    |                                                  |
| 40    | 1.350 | 1.350 | 1.500 |                 |             |                 |               |             | 0.900                    |             |             | -  | <br>                                             |
| 41    | 0.800 | 0.800 |       |                 |             |                 |               |             |                          | 1.500       |             |    |                                                  |
| 42    | 1.350 | 1.350 |       |                 |             |                 |               |             |                          | 1.500       |             |    |                                                  |
| 43    | 0.800 | 0.800 | 1.050 |                 |             |                 |               |             |                          | 1.500       |             |    |                                                  |
| 44    |       | 1.350 | 1.050 |                 |             |                 |               |             |                          | 1.500       |             |    |                                                  |
| 45    | 0.800 | 0.800 | 1.500 |                 |             |                 |               |             |                          | 0.900       |             |    |                                                  |
| 46    |       | 1.350 | 1.500 |                 |             |                 |               |             |                          | 0.900       |             |    |                                                  |
| 47    |       | 0.800 | 1.500 |                 |             |                 |               |             |                          | 3.500       | 1.500       |    |                                                  |
| 48    | 1.350 |       |       |                 |             |                 |               |             |                          |             | 1.500       |    |                                                  |
| 40    |       |       | 1.050 |                 |             |                 |               |             |                          |             | 1.500       |    |                                                  |

| 50 | 1.350 | 1.350 | 1.050 |  |  |  | 1.500 |        |        |
|----|-------|-------|-------|--|--|--|-------|--------|--------|
| 51 | 0.800 | 0.800 | 1.500 |  |  |  | 0.900 |        |        |
| 52 | 1.350 | 1.350 | 1.500 |  |  |  | 0.900 |        |        |
| 53 | 1.000 | 1.000 |       |  |  |  |       | -0.300 | -1.000 |
| 54 | 1.000 | 1.000 | 0.300 |  |  |  |       | -0.300 | -1.000 |
| 55 | 1.000 | 1.000 |       |  |  |  |       | 0.300  | -1.000 |
| 56 | 1.000 | 1.000 | 0.300 |  |  |  |       | 0.300  | -1.000 |
| 57 | 1.000 | 1.000 |       |  |  |  |       | -1.000 | -0.300 |
| 58 | 1.000 | 1.000 | 0.300 |  |  |  |       | -1.000 | -0.300 |
| 59 | 1.000 | 1.000 |       |  |  |  |       | -1.000 | 0.300  |
| 60 | 1.000 | 1.000 | 0.300 |  |  |  |       | -1.000 | 0.300  |
| 61 | 1.000 | 1.000 |       |  |  |  |       | 0.300  | 1.000  |
| 62 | 1.000 | 1.000 | 0.300 |  |  |  |       | 0.300  | 1.000  |
| 63 | 1.000 | 1.000 |       |  |  |  |       | -0.300 | 1.000  |
| 64 | 1.000 | 1.000 | 0.300 |  |  |  |       | -0.300 | 1.000  |
| 65 | 1.000 | 1.000 |       |  |  |  |       | 1.000  | 0.300  |
| 66 | 1.000 | 1.000 | 0.300 |  |  |  |       | 1.000  | 0.300  |
| 67 | 1.000 | 1.000 |       |  |  |  |       | 1.000  | -0.300 |
| 68 | 1.000 | 1.000 | 0.300 |  |  |  |       | 1.000  | -0.300 |

#### 2. Coeficientes para situaciones accidentales de incendio

| Comb. | PP    | CM    | Qa    | V(+X exc.+) | V(+X exc) | V(-X exc.+) | V(-X exc) | V(+Y exc.+) | V(+Y exc) | V(-Y exc.+) | V(-Y exc) | SX | SY |
|-------|-------|-------|-------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|----|----|
| 1     | 1.000 | 1.000 |       |             |           |             |           |             |           |             |           |    |    |
| 2     | 1.000 | 1.000 | 0.500 |             |           |             |           |             |           |             |           |    |    |
| 3     | 1.000 | 1.000 |       | 0.500       |           |             |           |             |           |             |           |    |    |
| 4     | 1.000 | 1.000 | 0.300 | 0.500       |           |             |           |             |           |             |           |    |    |
| 5     | 1.000 | 1.000 |       |             | 0.500     |             |           |             |           |             |           |    |    |
| 6     | 1.000 | 1.000 | 0.300 |             | 0.500     |             |           |             |           |             |           |    |    |
| 7     | 1.000 | 1.000 |       |             |           | 0.500       |           |             |           |             |           |    |    |
| 8     | 1.000 | 1.000 | 0.300 |             |           | 0.500       |           |             |           |             |           |    |    |
| 9     | 1.000 | 1.000 |       |             |           |             | 0.500     |             |           |             |           |    |    |
| 10    | 1.000 | 1.000 | 0.300 |             |           |             | 0.500     |             |           |             |           |    |    |
| 11    | 1.000 | 1.000 |       |             |           |             |           | 0.500       |           |             |           |    |    |
| 12    | 1.000 | 1.000 | 0.300 |             |           |             |           | 0.500       |           |             |           |    |    |
| 13    | 1.000 | 1.000 |       |             |           |             |           |             | 0.500     |             |           |    |    |
| 14    | 1.000 | 1.000 | 0.300 |             |           |             |           |             | 0.500     |             |           |    |    |
| 15    | 1.000 | 1.000 |       |             |           |             |           |             |           | 0.500       |           |    |    |
| 16    | 1.000 | 1.000 | 0.300 |             |           |             |           |             |           | 0.500       |           |    |    |
| 17    | 1.000 | 1.000 |       |             |           |             |           |             |           |             | 0.500     |    |    |
| 18    | 1.000 | 1.000 | 0.300 |             |           |             |           |             |           |             | 0.500     |    |    |

#### Tensiones sobre el terreno

Acciones características

Desplazamientos

Acciones características

| Comb. | PP    | CM    | Qa    | V(+X exc.+) | V(+X exc) | V(-X exc.+) | V(-X exc) | V(+Y exc.+) | V(+Y exc) | V(-Y exc.+) | V(-Y exc) | SX     | SY |
|-------|-------|-------|-------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|--------|----|
| 1     | 1.000 | 1.000 |       |             |           |             |           |             |           |             |           |        |    |
| 2     | 1.000 | 1.000 | 1.000 |             |           |             |           |             |           |             |           |        |    |
| 3     | 1.000 | 1.000 |       | 1.000       |           |             |           |             |           |             |           |        |    |
| 4     | 1.000 | 1.000 | 1.000 | 1.000       |           |             |           |             |           |             |           |        |    |
| 5     | 1.000 | 1.000 |       |             | 1.000     |             |           |             |           |             |           |        |    |
| 6     | 1.000 | 1.000 | 1.000 |             | 1.000     |             |           |             |           |             |           |        |    |
| 7     | 1.000 | 1.000 |       |             |           | 1.000       |           |             |           |             |           |        |    |
| 8     | 1.000 | 1.000 | 1.000 |             |           | 1.000       |           |             |           |             |           |        |    |
| 9     | 1.000 | 1.000 |       |             |           |             | 1.000     |             |           |             |           |        |    |
| 10    | 1.000 | 1.000 | 1.000 |             |           |             | 1.000     |             |           |             |           |        |    |
| 11    | 1.000 | 1.000 |       |             |           |             |           | 1.000       |           |             |           |        |    |
| 12    | 1.000 | 1.000 | 1.000 |             |           |             |           | 1.000       |           |             |           |        |    |
| 13    | 1.000 | 1.000 |       |             |           |             |           |             | 1.000     |             |           |        |    |
| 14    | 1.000 | 1.000 | 1.000 |             |           |             |           |             | 1.000     |             |           |        |    |
| 15    | 1.000 | 1.000 |       |             |           |             |           |             |           | 1.000       |           |        |    |
| 16    | 1.000 | 1.000 | 1.000 |             |           |             |           |             |           | 1.000       |           |        |    |
| 17    | 1.000 | 1.000 |       |             |           |             |           |             |           |             | 1.000     |        |    |
| 18    | 1.000 | 1.000 | 1.000 |             |           |             |           |             |           |             | 1.000     |        |    |
| 19    | 1.000 | 1.000 |       |             |           |             |           |             |           |             |           | -1.000 |    |





| 20 | 1.000 | 1.000 | 1.000 |  |  |  |  | -1.000 |        |
|----|-------|-------|-------|--|--|--|--|--------|--------|
| 21 | 1.000 | 1.000 |       |  |  |  |  | 1.000  |        |
| 22 | 1.000 | 1.000 | 1.000 |  |  |  |  | 1.000  |        |
| 23 | 1.000 | 1.000 |       |  |  |  |  |        | -1.000 |
| 24 | 1.000 | 1.000 | 1.000 |  |  |  |  |        | -1.000 |
| 25 | 1.000 | 1.000 |       |  |  |  |  |        | 1.000  |
| 26 | 1.000 | 1.000 | 1.000 |  |  |  |  |        | 1.000  |

# 4.3 DURABILIDAD

El recubrimiento de las armaduras de los depósitos de hormigón será igual a 4 cm. Se adjunta cuadro de la EHE-08.

| Llamiaón   | Cemento                                             | Vida útil de                         | Class | general e | de expos | ición    |
|------------|-----------------------------------------------------|--------------------------------------|-------|-----------|----------|----------|
| nomigon    | Cernento                                            | proyecto (t <sub>g</sub> )<br>(años) | Illa  | IIIb      | Ilic     | 1V 35 40 |
|            | CEM IIVA, CEM IIVB, CEM<br>IV, CEM IVB-S, B-P, B-V, | 50                                   | 25    | 30        | 35       | 35       |
| Armado     | A-D u hormigion con<br>adición de microsilice       | 100                                  | 30    | 35        | 40       | 40       |
|            | Resto de cementos                                   | 50                                   | 45    | 40        |          | *        |
|            | utilizables                                         | 100                                  | 65    | 29        | *        | *1       |
|            | CEM IVA-D o bien con                                | 50                                   | 30    | 35        | 40       | 40       |
| Protopondo | adición de humo de silice *<br>superior al 6%       | 100                                  | 35    | 40        | 45       | 45       |
| rretensado | Resto de cementos                                   | 50                                   | 65    | 35 40     | *        |          |
|            | utilizables, según el<br>Artículo 267               | 100                                  |       |           | *        |          |

| Cl 4                   | 50°C 1885 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 - 1886 -                              | Resistencia<br>característica del | Vida útil d<br>(t <sub>s</sub> ), ( | e proyecto<br>años) |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|---------------------|
| Clase de<br>exposición | Tipo de cemento                                                                                                                            | hormigôn<br>[N/mm²]               | 50                                  | 100                 |
| Н                      | CEM III                                                                                                                                    | 25 ≤ fox <40                      | 25                                  | 50                  |
|                        |                                                                                                                                            | fa ≥ 40                           | 15                                  | 25                  |
|                        | Otros tipos de cemento                                                                                                                     | 25 ≤ f± <40                       | 20                                  | 35                  |
|                        |                                                                                                                                            | f <sub>sk</sub> ≥ 40              | 10                                  | 20                  |
| F                      | CEM I VA-D                                                                                                                                 | 25 ≤ fox <40                      | 25                                  | 50                  |
|                        |                                                                                                                                            | fa≥40                             | 15                                  | 35                  |
|                        | CEM III                                                                                                                                    | 25 ≤ f <sub>*</sub> <40           | 40                                  | 75                  |
|                        |                                                                                                                                            | f± ≥ 40                           | 20                                  | 40                  |
|                        | Otros tipos de cementos o en el caso de empleo de                                                                                          | 25 ≤ fox <40                      | 20                                  | 40                  |
|                        | adiciones al hornigón                                                                                                                      | f*≥40                             | 10                                  | 20                  |
| E (1)                  | Cualquiera                                                                                                                                 | 25 ≤ fox <40                      | 40                                  | 80                  |
|                        |                                                                                                                                            | fa≥40                             | 20                                  | 35                  |
| Qa                     | CEM III, CEM IV, CEM IVB-S, B-P, B-V, A-D u<br>hormigón con adición de microsilice superior al 6% o<br>de cenizas volantes superior al 20% |                                   | 40                                  | 55                  |
|                        | Resto de cementos utilizables                                                                                                              |                                   |                                     |                     |
| Qb, Qc                 | Cualquiera                                                                                                                                 | -                                 | (7)                                 | (9)                 |

# 4.3.1 AMBIENTE. CLASES GENERAL Y ESPECÍFICA DE EXPOSICIÓN

Se ha propuesto para el caso de general de exposición previsto, un hormigón preparado para un ambiente IV, subclase Qb.

# **4.3.2 CEMENTO**

# 4.3.2.1.1 TIPO DE CEMENTO

El cemento a utilizar será CEM II 42,5 SR.

# 4.3.2.1.2 MÁXIMA RELACIÓN AGUA/CEMENTO

La máxima relación agua/cemento será 0,5, para el ambiente seleccionado IV, subclase Qb. A continuación, se indica tabla extraída de la EHE-08, donde se indican las relaciones máximas según el tipo de ambiente, y el contenido mínimo en cemento.

# 4.3.2.1.3 CONTENIDO MÍNIMO DE CEMENTO

Será de 350 kg/m<sup>3</sup>.

# 4.3.3 RESISTENCIA CARACTERÍSTICA MÍNIMA EXIGIDA AL HORMIGÓN

La resistencia característica será de 30 N/mm<sup>2</sup>.

# 4.3.4 NIVEL DE CONTROL DE LA EJECUCIÓN

El nivel de control será normal.

# 4.3.5 RECUBRIMIENTO

El recubrimiento será de 4 cm.

# 4.3.6 IDONEIDAD DE LOS MATERIALES

El hormigón a utilizar será HA-30/P/20/IV-Qb y acero B-500-S.





# 4.4 CONDICIONANTES GEOTÉCNICOS

De acuerdo con los datos obtenidos del estudio geotécnico realizado, se estima oportuno resolver el apoyo estructural mediante CIMENTACIÓN SUPERFICIAL, es decir, se recomienda una cimentación mediante LOSA DE HORMIGÓN, empotrando el canto de dicha losa a partir de 1,00 metro de profundidad o mediante la construcción de una explanada a tal fin.

Finalmente, se ha procedido a la mejora de la explanada mediante el relleno de 1,20 metros con suelo seleccionado bajo la losa.

# 4.5 RESULTADOS DEL CÁLCULO

A continuación, se adjunta los listados de cálculo obtenidos.

#### 4.5.1 ARMADO PILARES

|                      |                   |             |           | А       | rmado d | e pilares |                |                            |                    |        |        |
|----------------------|-------------------|-------------|-----------|---------|---------|-----------|----------------|----------------------------|--------------------|--------|--------|
| Hormi                | gón: HA-30, Y     | c=1.5       |           |         |         |           |                |                            |                    |        |        |
|                      |                   | Geometría   |           |         |         |           | Armadura       | is                         |                    |        |        |
| Pilar                |                   | Dimensiones | Tramo     |         | Bar     | ras       |                | Estril                     | oos                | Aprov. | Estado |
| Tildi                | Planta            | (cm)        | (m)       | Esquina | Cara X  | Cara Y    | Cuantía<br>(%) | Descripción <sup>(1)</sup> | Separación<br>(cm) | (%)    | LStado |
| P1                   | Forjado 1         | 30x30       | 0.00/3.00 | 4Ø12    | 2Ø12    | 2Ø12      | 1.01           | 1eØ6                       | 15                 | 15.7   | Cumple |
| PI                   | Cimentación       | -           | -         | 4Ø10    | 2Ø10    | 2Ø10      | 0.70           | 1eØ6                       | -                  | 20.0   | Cumple |
| P2                   | Forjado 1         | 30x30       | 0.00/3.00 | 4Ø12    | 2Ø12    | 2Ø12      | 1.01           | 1eØ6                       | 15                 | 13.7   | Cumple |
| PZ                   | Cimentación       | -           | -         | 4Ø10    | 2Ø10    | 2Ø10      | 0.70           | 1eØ6                       | -                  | 16.1   | Cumple |
| Р3                   | Forjado 1         | 30x30       | 0.00/3.00 | 4Ø12    | 2Ø12    | 2Ø12      | 1.01           | 1eØ6                       | 15                 | 15.7   | Cumple |
| P3                   | Cimentación       | -           | -         | 4Ø10    | 2Ø10    | 2Ø10      | 0.70           | 1eØ6                       | -                  | 20.0   | Cumple |
| P4                   | Forjado 1         | 30x30       | 0.00/3.00 | 4Ø12    | 2Ø12    | 2Ø12      | 1.01           | 1eØ6                       | 15                 | 15.7   | Cumple |
| P4                   | Cimentación       | -           | -         | 4Ø10    | 2Ø10    | 2Ø10      | 0.70           | 1eØ6                       | -                  | 20.0   | Cumple |
| P5                   | Forjado 1         | 30x30       | 0.00/3.00 | 4Ø12    | 2Ø12    | 2Ø12      | 1.01           | 1eØ6                       | 15                 | 13.7   | Cumple |
| P3                   | Cimentación       | -           | -         | 4Ø10    | 2Ø10    | 2Ø10      | 0.70           | 1eØ6                       | -                  | 16.1   | Cumple |
| P6                   | Forjado 1         | 30x30       | 0.00/3.00 | 4Ø12    | 2Ø12    | 2Ø12      | 1.01           | 1eØ6                       | 15                 | 15.7   | Cumple |
| Po                   | Cimentación       | -           | -         | 4Ø10    | 2Ø10    | 2Ø10      | 0.70           | 1eØ6                       | -                  | 20.0   | Cumple |
| Notas: $^{(1)}e = e$ | estribo, r = rama | <u> </u>    |           |         |         |           |                |                            |                    |        |        |

# 4.5.2 COMPROBACIONES E.L.U. EN PILARES

En las tablas de comprobación de pilares de acero no se muestran las comprobaciones con coeficiente de aprovechamiento inferior al 10%.

> Disp.: Disposiciones relativas a las armaduras

> Arm.: Armadura mínima y máxima

- > Q: Estado límite de agotamiento frente a cortante
- N, M: Estado límite de agotamiento frente a solicitaciones normales
- Sism.: Criterios de diseño por sismo
- > Disp. S.: Criterios de diseño por sismo
- > Cap.: Diseño por capacidad

#### 4.5.2.1.1 P1

|                                                                                                                                        |                                                     |          |                     |                     |          |            | Secci               | ón de horn          | nigón          |               |                        |            |           |               |               |            |            |         |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------|---------------------|---------------------|----------|------------|---------------------|---------------------|----------------|---------------|------------------------|------------|-----------|---------------|---------------|------------|------------|---------|
|                                                                                                                                        | Dimensión                                           |          |                     |                     |          | Comp       | probacione          | es                  |                |               |                        |            | Esfuer    | zos pésim     | ios           |            |            |         |
| Tramo                                                                                                                                  | (cm)                                                | Posición | Disp.               | Arm.                | Q<br>(%) | N,M<br>(%) | Sism.               | Disp. S.            | Cap.           | Aprov.<br>(%) | Naturaleza             | Comp.      | N<br>(kN) | Mxx<br>(kN·m) | Myy<br>(kN·m) | Qx<br>(kN) | Qy<br>(kN) | Estado  |
|                                                                                                                                        |                                                     | Cabeza   | Cumple              | Cumple              | 6.5      | 9.2        | Cumple              | N.P. <sup>(2)</sup> | Cumple         | 9.2           | G, S <sup>(3)</sup>    | Q S.       | 2.01      | 0.35          | -0.18         | 0.37       | 0.09       | Cumpl   |
|                                                                                                                                        |                                                     | Cabeza   | Cumple              | Cumple              | 0.5      | 9.2        | Cumple              | N.F.                | Cumple         | 9.2           | G, Q, V <sup>(4)</sup> | N,M        | 3.69      | 0.45          | 0.49          | -0.22      | 0.00       | Cumpi   |
|                                                                                                                                        |                                                     | 2.5 m    | Cumania             | Cumania             | 6.4      | 15.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple         | 15.7          | G, S <sup>(3)</sup>    | QS.        | 2.69      | 0.07          | 0.91          | 0.37       | 0.09       | Cumani  |
| Forjado 1 (0 - 3.25 m)                                                                                                                 | 30x30                                               | 2.5 111  | Cumple              | Cumple              | 0.4      | 15.7       | Cumple              | N.P.                | Cumple         | 15.7          | G, Q, S <sup>(5)</sup> | N,M S.     | 2.80      | 1.02          | 0.35          | 0.09       | -0.36      | Cumple  |
| ronjado 1 (0 - 3.23 m)                                                                                                                 | 30X30                                               | 0.6 m    | Cumania             | Cumania             | 6.4      | 15.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple         | 15.7          | G, S <sup>(3)</sup>    | Q S.       | 2.69      | 0.07          | 0.91          | 0.37       | 0.09       | Cumani  |
|                                                                                                                                        |                                                     |          | Cumple              | Cumple              | 0.4      | 15.7       | Cumple              | N.P.                | Cumple         | ·             | G, Q, S <sup>(5)</sup> | N,M S.     | 2.80      | 1.02          | 0.35          | 0.09       | -0.36      | Cumple  |
|                                                                                                                                        |                                                     |          | Cumania             | Cumania             | 6.4      | 15.7       | Cumania             | N.P. <sup>(2)</sup> | Cumania        | 15.7          | G, S <sup>(3)</sup>    | Q S.       | 2.69      | 0.07          | 0.91          | 0.37       | 0.09       | Cumania |
|                                                                                                                                        |                                                     |          | Cumple              | Cumple              | 0.4      | 15.7       | Cumple              | N.P.                | Cumple         | 15.7          | G, Q, S <sup>(5)</sup> | N,M S.     | 2.80      | 1.02          | 0.35          | 0.09       | -0.36      | Cumple  |
| Cina anta al fa                                                                                                                        | 2020                                                |          | N. D. (1)           | N D (1)             | 0.0      | 20.0       | N D (1)             | N D (1)             | C              | 20.0          | G, S <sup>(3)</sup>    | Q S.       | 2.69      | 0.07          | 0.91          | 0.37       | 0.09       | Comment |
| Cimentación                                                                                                                            | 30x30                                               | Arranque | N.P. <sup>(1)</sup> | N.P. <sup>(1)</sup> | 0.8      | 20.0       | N.P. <sup>(1)</sup> | N.P. <sup>(1)</sup> | Cumple         | 20.0          | G, S <sup>(6)</sup>    | N,M S.     | 2.64      | 1.00          | 0.34          | 0.09       | -0.36      | Cumple  |
| Notas:  (1) La comprobación n (2) Debido a las caract (3) PP+CM+SX+0.3·S) (4) 1.35·PP+1.35·CM+ (5) PP+CM+0.3·Ga+0. (6) PP+CM+0.3·SX+S) | erísticas de acel<br>(<br>1.05·Qa+1.5·V(<br>3·SX+SY |          | de la zona,         | no se realiza       | a ningur | na compr   | robación en o       | cuanto a crite      | erios de disei | ño por sism   | no para estructur      | as de horm | gón arn   | nado.         |               |            |            |         |

#### 4.5.2.1.2 P2

|                          | Sección de hormigón |          |                     |                     |          |            |                     |                     |           |               |                        |        |           |               |               |            |            |           |
|--------------------------|---------------------|----------|---------------------|---------------------|----------|------------|---------------------|---------------------|-----------|---------------|------------------------|--------|-----------|---------------|---------------|------------|------------|-----------|
|                          | Dimensión           |          |                     |                     |          | Comp       | probacione          | es                  |           |               |                        |        | Esfuerz   | os pésimo     | s             |            |            |           |
| Tramo                    | (cm)                | Posición | Disp.               | Arm.                | Q<br>(%) | N,M<br>(%) | Sism.               | Disp. S.            | Cap.      | Aprov.<br>(%) | Naturaleza             | Comp.  | N<br>(kN) | Mxx<br>(kN·m) | Myy<br>(kN·m) | Qx<br>(kN) | Qy<br>(kN) | Estado    |
|                          |                     | Cabeza   | Cumple              | Cumple              | 7.4      | 9.1        | Cumple              | N.P. <sup>(2)</sup> | Cumple    | 9.1           | G, S <sup>(3)</sup>    | Q S.   | 6.37      | 0.45          | -0.42         | 0.45       | 0.10       | Cumple    |
|                          |                     | Cabeza   | Cumple              | Cumple              | 7.4      | 9.1        | Cumple              | N.P.                | Cumple    | 9.1           | G, Q, V <sup>(4)</sup> | N,M    | 10.21     | 0.76          | -0.01         | 0.01       | 0.20       | Cumple    |
|                          |                     | 2.5 m    | Cumple              | Cumple              | 7.3      | 13.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple    | 13.7          | G, S <sup>(3)</sup>    | Q S.   | 7.05      | 0.16          | 0.94          | 0.45       | 0.10       | Cumple    |
| Forjado 1 (0 - 3.25 m)   | 30x30               | 2.3 111  | Cumple              | Cumple              | 7.3      | 13.7       | Cumple              | IN.F.               | Cumple    | 13.7          | G, S <sup>(5)</sup>    | N,M S. | 6.58      | 1.20          | 0.21          | 0.10       | -0.41      | Cumple    |
| Forjado 1 (0 - 3.25 III) | 30X30               | 0.6 m    | Cumple              | Cumple              | 7.3      | 13.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple    | 13.7          | G, S <sup>(3)</sup>    | Q S.   | 7.05      | 0.16          | 0.94          | 0.45       | 0.10       | Cumple    |
|                          |                     | 0.6 111  | Cumple              | Cumple              | 7.3      | 13.7       | Cumple              | N.P.                | Cumple    | 13.7          | G, S <sup>(5)</sup>    | N,M S. | 6.58      | 1.20          | 0.21          | 0.10       | -0.41      | Cumple    |
|                          |                     | Pie      | Cumple              | Cumple              | 7.3      | 13.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple    | 13.7          | G, S <sup>(3)</sup>    | Q S.   | 7.05      | 0.16          | 0.94          | 0.45       | 0.10       | Cumple    |
|                          |                     | rie      | Cumple              | Cumple              | 7.3      | 13.7       | Cumple              | N.F.                | Cumple    | 13.7          | G, S <sup>(5)</sup>    | N,M S. | 6.58      | 1.20          | 0.21          | 0.10       | -0.41      | Cumple    |
| Ciaranta al fa           | 2020                |          | N.P. <sup>(1)</sup> | N D (1)             | 1.0      | 16.1       | N D (1)             | N.P. <sup>(1)</sup> | Committee | 16.1          | G, Q, S <sup>(6)</sup> | Q S.   | 7.49      | 0.18          | 0.94          | 0.45       | 0.10       | Committee |
| Cimentación              | 30x30               | Arranque | N.P.(1)             | N.P. <sup>(1)</sup> | 1.0      | 16.1       | N.P. <sup>(1)</sup> | N.P.(1)             | Cumple    | 16.1          | G, S <sup>(5)</sup>    | N,M S. | 6.58      | 1.20          | 0.21          | 0.10       | -0.41      | Cumple    |
| Notas:                   | *                   | •        |                     |                     | •        | •          |                     |                     |           | •             | •                      |        |           |               |               |            |            |           |

# 4.5.2.1.3 P3

| Sección de hormigón                 |                            |                                          |                     |                                                                                                                                                                                                                                         |                                |                                       |                                                      |                                                          |                                                                        |                                                                                             |                                                                                                          |                                                                                                                                                  |                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------|----------------------------|------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N                                   |                            |                                          |                     |                                                                                                                                                                                                                                         | Comp                           | probacione                            | es                                                   |                                                          |                                                                        | Esfuerzos pésimos                                                                           |                                                                                                          |                                                                                                                                                  |                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (cm)                                | Posición                   | Disp.                                    | Arm.                | Q<br>(%)                                                                                                                                                                                                                                | N,M<br>(%)                     | Sism.                                 | Disp. S.                                             | Cap.                                                     | Aprov.<br>(%)                                                          | Naturaleza                                                                                  | Comp.                                                                                                    | N<br>(kN)                                                                                                                                        | Mxx<br>(kN·m)                                          | Myy<br>(kN·m)                                                                                                             | Qx<br>(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qy<br>(kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Estado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cabaza Cumple Cumple 6.5 9.2 Cumple | Cumple                     | nlo N.P.(2) Cumple 0.3                   | G, S <sup>(3)</sup> | Q S.                                                                                                                                                                                                                                    | 2.01                           | 0.35                                  | 0.18                                                 | -0.37                                                    | 0.09                                                                   | Cumple                                                                                      |                                                                                                          |                                                                                                                                                  |                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     | Cabeza                     | Cumple                                   | Cumple              | 0.5                                                                                                                                                                                                                                     | 9.2                            | Cumple                                | IN.F.                                                | Cumple                                                   | 9.2                                                                    | G, Q, V <sup>(4)</sup>                                                                      | N,M                                                                                                      | 3.69                                                                                                                                             | 0.45                                                   | -0.49                                                                                                                     | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                     |                            | Cunnala                                  | والموسين            | <i>c</i> 1                                                                                                                                                                                                                              | 157                            | Cumania                               | N D (2)                                              | Cumania                                                  | 157                                                                    | G, S <sup>(3)</sup>                                                                         | Q S.                                                                                                     | 2.69                                                                                                                                             | 0.07                                                   | -0.91                                                                                                                     | -0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20,,20                              | -                          | Cumple                                   | Cumple              | 0.4                                                                                                                                                                                                                                     | 15.7                           | Cumple                                | N.F.                                                 | Cumple                                                   | 15.7                                                                   | G, Q, S <sup>(5)</sup>                                                                      | N,M S.                                                                                                   | 2.80                                                                                                                                             | 1.02                                                   | -0.35                                                                                                                     | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30X30                               | 0.6                        |                                          |                     |                                                                                                                                                                                                                                         | 1.                             | C                                     | N D (2)                                              | C                                                        | 15.7                                                                   | G, S <sup>(3)</sup>                                                                         | Q S.                                                                                                     | 2.69                                                                                                                                             | 0.07                                                   | -0.91                                                                                                                     | -0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     | 0.6 m                      | Cumpie                                   | Cumpie              | 6.4                                                                                                                                                                                                                                     | 15./                           | Cumpie                                | N.P.                                                 | Cumpie                                                   | 15./                                                                   | G, Q, S <sup>(5)</sup>                                                                      | N,M S.                                                                                                   | 2.80                                                                                                                                             | 1.02                                                   | -0.35                                                                                                                     | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                     | Die                        | Cumania                                  | Cumania             | <i>c</i> 1                                                                                                                                                                                                                              | 157                            | Cumania                               | N D (2)                                              | Cumania                                                  | 15.7                                                                   | G, S <sup>(3)</sup>                                                                         | Q S.                                                                                                     | 2.69                                                                                                                                             | 0.07                                                   | -0.91                                                                                                                     | -0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cummla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                     | Pie                        | Cumple                                   | Cumple              | 0.4                                                                                                                                                                                                                                     | 15.7                           | Cumple                                | N.P.                                                 | Cumple                                                   | 15./                                                                   | G, Q, S <sup>(5)</sup>                                                                      | N,M S.                                                                                                   | 2.80                                                                                                                                             | 1.02                                                   | -0.35                                                                                                                     | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20.20                               |                            | N D (1)                                  | N D (1)             |                                                                                                                                                                                                                                         | 20.0                           | N D (1)                               | N D (1)                                              |                                                          | 20.0                                                                   | G, S <sup>(3)</sup>                                                                         | Q S.                                                                                                     | 2.69                                                                                                                                             | 0.07                                                   | -0.91                                                                                                                     | -0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30x30                               | Arranque                   | N.P.(1)                                  | N.P.(1)             | 0.8                                                                                                                                                                                                                                     | 20.0                           | N.P.(1)                               | N.P.                                                 | Cumple                                                   |                                                                        | G, S <sup>(6)</sup>                                                                         | N,M S.                                                                                                   | 2.64                                                                                                                                             | 1.00                                                   | -0.34                                                                                                                     | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cumple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                     | Oimensión<br>(cm)<br>30x30 | (cm) Posicion  Cabeza  2.5 m  0.6 m  Pie | Cabeza   Cumple     | (cm)         Posicion         Disp.         Arm.           Cabeza         Cumple         Cumple           2.5 m         Cumple         Cumple           0.6 m         Cumple         Cumple           Pie         Cumple         Cumple | Cabeza   Cumple   Cumple   6.5 | Posición   Disp.   Arm.   Q   N,M (%) | Posición   Posición   Disp.   Arm.   Q   N,M   Sism. | Cabeza   Cumple   Cumple   6.4   15.7   Cumple   N.P.(2) | Posición   Posición   Disp.   Arm.   Q   N,M   Sism.   Disp. S.   Cap. | Posición   Posición   Disp.   Arm.   Q (%)   N,M (%)   Sism.   Disp. S.   Cap.   Aprov. (%) | Posición   Posición   Disp.   Arm.   Q (%)   N,M (%)   Sism.   Disp. S.   Cap.   Aprov. (%)   Naturaleza | Posición   Posición   Disp.   Arm.   $\frac{Q}{(\%)}$   $\frac{N,M}{(\%)}$   Sism.   Disp. S.   Cap.   $\frac{Aprov}{(\%)}$   Naturaleza   Comp. | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Posición   Posición   Disp.   Arm.   Q   N,M   Sism.   Disp. S.   Cap.   Aprov.   Naturaleza   Comp.   N,N   Mxx   (kN-m) | Posición   Posición   Posición   Disp.   Arm.   Q   N,M   Sism.   Disp. S.   Cap.   Aprov. (%)   Naturaleza   Comp.   N   (NN)   (NN) | Posición   Posición   Disp.   Arm.   Q   N,M   (%)   Sism.   Disp. S.   Cap.   Aprov. (%)   Naturaleza   Comp.   N   (NN)   (N | Posición   Posición   Posición   Disp.   Arm.   Q   N,M   (%)   Sism.   Disp. S.   Cap.   Aprov.   Naturaleza   Comp.   N,M   Mxx   (kN·m)   (kN·m)   (kN·m)   (kN·m)   (kN)   (kN·m)   (kN·m) |





#### 4.5.2.1.4 P4

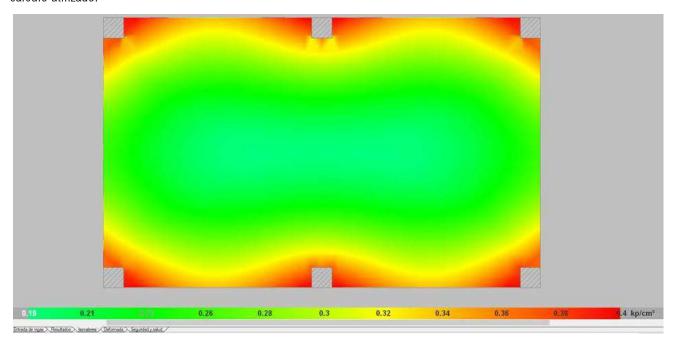
|                          |           |          |                     |                     |          |            | Secci               | ón de horn          | nigón  |               |                        |        |           |               |               |            |            |        |
|--------------------------|-----------|----------|---------------------|---------------------|----------|------------|---------------------|---------------------|--------|---------------|------------------------|--------|-----------|---------------|---------------|------------|------------|--------|
|                          | Dimensión |          |                     |                     |          | Comp       | probacione          | es                  |        |               |                        |        | Esfuer    | zos pésim     | ios           |            |            |        |
| Tramo                    | (cm)      | Posición | Disp.               | Arm.                | Q<br>(%) | N,M<br>(%) | Sism.               | Disp. S.            | Cap.   | Aprov.<br>(%) | Naturaleza             | Comp.  | N<br>(kN) | Mxx<br>(kN·m) | Myy<br>(kN·m) | Qx<br>(kN) | Qy<br>(kN) | Estado |
|                          |           | Cabeza   | Cumple              | Cumple              | 6.5      | 9.2        | Cumple              | N.P. <sup>(2)</sup> | Cumple | 9.2           | G, S <sup>(3)</sup>    | Q S.   | 2.01      | -0.35         | 0.18          | -0.37      | -0.09      | Cumple |
|                          |           | Cabeza   | Cumple              | Cumple              | 0.5      | 9.2        | Cumple              | IN.F.               | Cumple | 9.2           | G, Q, V <sup>(4)</sup> | N,M    | 3.69      | -0.45         | -0.49         | 0.22       | 0.00       | Cumple |
|                          |           | 2.5 m C  | 2.5 m Cumple        | Cumple              | 6.4      | 15.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple | 15.7          | G, S <sup>(3)</sup>    | Q S.   | 2.69      | -0.07         | -0.91         | -0.37      | -0.09      | Cumple |
| Forjado 1 (0 - 3.25 m)   | 30x30     | 2.3 111  | Cumple              | Cumple              | 0.4      | 13.7       | Cumple              | N.F.                | Cumple | 13.7          | G, Q, S <sup>(5)</sup> | N,M S. | 2.80      | -1.02         | -0.35         | -0.09      | 0.36       | Cumple |
| Forjado 1 (0 - 3.25 III) | 30X30     | 0.6 m    | Cumple              | Cumple              | 6.4      | 15.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple | 15.7          | G, S <sup>(3)</sup>    | Q S.   | 2.69      | -0.07         | -0.91         | -0.37      | -0.09      | Cumple |
|                          |           | 0.6 111  | Cumple              | Cumple              | 0.4      | 15./       | Cumple              | N.P.                | Cumple | 15./          | G, Q, S <sup>(5)</sup> | N,M S. | 2.80      | -1.02         | -0.35         | -0.09      | 0.36       | Cumple |
|                          |           | Pie      | Cumple              | Cumple              | 6.4      | 15.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple | 15.7          | G, S <sup>(3)</sup>    | Q S.   | 2.69      | -0.07         | -0.91         | -0.37      | -0.09      | Cumple |
|                          |           | Pie      | Cumple              | Cumple              | 0.4      | 15./       | Cumple              | N.P.                | Cumple | 15./          | G, Q, S <sup>(5)</sup> | N,M S. | 2.80      | -1.02         | -0.35         | -0.09      | 0.36       | Cumple |
| Cincontrol (n            | 2020      |          | N. D. (1)           | N. D. (1)           | 0.0      | 20.0       | N D (1)             | N D (1)             | 6      | 20.0          | G, S <sup>(3)</sup>    | Q S.   | 2.69      | -0.07         | -0.91         | -0.37      | -0.09      | C      |
| Cimentación              | 30x30     | Arranque | N.P. <sup>(1)</sup> | N.P. <sup>(1)</sup> | 0.8      | 20.0       | N.P. <sup>(1)</sup> | N.P. <sup>(1)</sup> | Cumple | 20.0          | G, S <sup>(6)</sup>    | N,M S. | 2.64      | -1.00         | -0.34         | -0.09      | 0.36       | Cumple |

#### 4.5.2.1.5 P5

|                          |           |             |                     |                     |                    |            | Secci                   | ón de horr          | migón    |                     |                        |        |           |               |               |            |            |        |
|--------------------------|-----------|-------------|---------------------|---------------------|--------------------|------------|-------------------------|---------------------|----------|---------------------|------------------------|--------|-----------|---------------|---------------|------------|------------|--------|
|                          | Dimensión |             |                     |                     |                    | Comp       | probacione              | es                  |          |                     |                        |        | Esfuerz   | os pésimo     | os            |            |            |        |
| Tramo                    | (cm)      | Posición    | Disp.               | Arm.                | Q<br>(%)           | N,M<br>(%) | Sism.                   | Disp. S.            | Cap.     | Aprov.<br>(%)       | Naturaleza             | Comp.  | N<br>(kN) | Mxx<br>(kN·m) | Myy<br>(kN·m) | Qx<br>(kN) | Qy<br>(kN) | Estado |
|                          |           | Cabeza      | Cumple              | Cumple              | 7.4                | 9.1        | Cumple                  | N.P. <sup>(2)</sup> | Cumple   | 9.1                 | G, S <sup>(3)</sup>    | Q S.   | 6.37      | -0.45         | 0.42          | -0.45      | -0.10      | Cumple |
|                          |           | Cabeza      | Cumple              | Cumple              | 7.4                | 9.1        | Cumple                  | N.F.                | Cumple   | 9.1                 | G, Q, V <sup>(4)</sup> | N,M    | 10.21     | -0.76         | -0.01         | 0.01       | -0.20      | Cumple |
|                          |           | 2.5 m Cumpl | Cumple              | Cumple              | le 7.3 13.7 Cumple | Cumple     | N.P. <sup>(2)</sup> Cur | Cumple              | 13.7     | G, S <sup>(3)</sup> | Q S.                   | 7.05   | -0.16     | -0.94         | -0.45         | -0.10      | Cumple     |        |
| Forjado 1 (0 - 3.25 m)   | 30x30     | 2.3 111     | Cumple              | Cumple              | 7.3                | 13.7       | Cumple                  | N.F.                | Cumple   | 13.7                | G, S <sup>(5)</sup>    | N,M S. | 6.58      | -1.20         | -0.21         | -0.10      | 0.41       | Cumple |
| rorjado 1 (0 - 3.25 III) | 30X30     | 0.6 m       | Cumania             | Cumple              | 7.3                | 13.7       | Cumpula                 | N.P. <sup>(2)</sup> | Cumania  | 13.7                | G, S <sup>(3)</sup>    | Q S.   | 7.05      | -0.16         | -0.94         | -0.45      | -0.10      | Cummla |
|                          |           | 0.6 111     | Cumple              | Cumple              | 7.3                | 13.7       | Cumple                  | N.P.                | Cumple   | 13./                | G, S <sup>(5)</sup>    | N,M S. | 6.58      | -1.20         | -0.21         | -0.10      | 0.41       | Cumple |
|                          |           | Pie         | Cumania             | Cumania             | 7.3                | 13.7       | Cumpula                 | N.P. <sup>(2)</sup> | Cumania  | 13.7                | G, S <sup>(3)</sup>    | Q S.   | 7.05      | -0.16         | -0.94         | -0.45      | -0.10      | Cummin |
|                          |           | Pie         | Cumple              | Cumple              | 7.3                | 13.7       | Cumple                  | N.P.                | Cumple   | 13.7                | G, S <sup>(5)</sup>    | N,M S. | 6.58      | -1.20         | -0.21         | -0.10      | 0.41       | Cumple |
| Classacta elfa           | 2020      |             | N. D. (1)           | N. D. (1)           | 1.0                | 16.1       | N. D. (1)               | N. D. (1)           | Cle      | 16.1                | G, Q, S <sup>(6)</sup> | Q S.   | 7.49      | -0.18         | -0.94         | -0.45      | -0.10      | C      |
| Cimentación              | 30x30     | Arranque    | N.P. <sup>(1)</sup> | N.P. <sup>(1)</sup> | 1.0                | 16.1       | N.P. <sup>(1)</sup>     | N.P. <sup>(1)</sup> | Cumple 1 | 16.1                | G, S <sup>(5)</sup>    | N,M S. | 6.58      | -1.20         | -0.21         | -0.10      | 0.41       | Cumple |

#### 4.5.2.1.6 P6

|                          | Sección de hormigón |          |                     |                     |          |            |                     |                     |        |               |                        |                        |           |               |               |            |            |        |        |
|--------------------------|---------------------|----------|---------------------|---------------------|----------|------------|---------------------|---------------------|--------|---------------|------------------------|------------------------|-----------|---------------|---------------|------------|------------|--------|--------|
|                          | Dimensión           |          |                     |                     |          | Comp       | probacione          | es                  |        |               |                        |                        | Esfuer    | zos pésim     | ios           |            |            |        |        |
| Tramo                    | (cm)                | Posición | Disp.               | Arm.                | Q<br>(%) | N,M<br>(%) | Sism.               | Disp. S.            | Сар.   | Aprov.<br>(%) | Naturaleza             | Comp.                  | N<br>(kN) | Mxx<br>(kN·m) | Myy<br>(kN·m) | Qx<br>(kN) | Qy<br>(kN) | Estado |        |
|                          |                     | Cabeza   | Cumple              | Cumple              | 6.5      | 9.2        | Cumple              | N.P. <sup>(2)</sup> | Cumple | 9.2           | G, S <sup>(3)</sup>    | Q S.                   | 2.01      | -0.35         | -0.18         | 0.37       | -0.09      | Cumple |        |
|                          |                     | Cabeza   | Cumple              | Cumple              | 5.       | 9.2        | Cumple              | IN.F.               | Cumple | 9.2           | G, Q, V <sup>(4)</sup> | N,M                    | 3.69      | -0.45         | 0.49          | -0.22      | 0.00       | Cumple |        |
|                          |                     | 2.5 m    | Cumple              | Cumple              | 6.4      | 15.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple | 15.7          | G, S <sup>(3)</sup>    | Q S.                   | 2.69      | -0.07         | 0.91          | 0.37       | -0.09      | Cumple |        |
| Forjado 1 (0 - 3.25 m)   | 20720               | 30x30    | 2.5 III Cu          | Cumple              | Cumple   | 5.         | 1 13.7              | Cumple              | IN.F.  | Cumple        | 13.7                   | G, Q, S <sup>(5)</sup> | N,M S.    | 2.80          | -1.02         | 0.35       | 0.09       | 0.36   | Cumple |
| ronjado 1 (0 - 3.23 iii) | 30X30               | 0.6 m    | Cumple              | Cumple              | 6.4      | 15.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple | 15.7          | G, S <sup>(3)</sup>    | Q S.                   | 2.69      | -0.07         | 0.91          | 0.37       | -0.09      | Cumple |        |
|                          |                     | 0.0 111  | Cumple              | Cumple              | 0.4      | 13.7       | Cumple              | IN.F.               | Cumple | 13.7          | G, Q, S <sup>(5)</sup> | N,M S.                 | 2.80      | -1.02         | 0.35          | 0.09       | 0.36       | Cumple |        |
|                          |                     | Pie      | Cumple              | Cumple              | 6.4      | 15.7       | Cumple              | N.P. <sup>(2)</sup> | Cumple | 15.7          | G, S <sup>(3)</sup>    | Q S.                   | 2.69      | -0.07         | 0.91          | 0.37       | -0.09      | Cumple |        |
|                          |                     | rie      | Cumple              | Cumple              | 5.       | 13.7       | Cumple              | N.F.                | Cumple | 13.7          | G, Q, S <sup>(5)</sup> | N,M S.                 | 2.80      | -1.02         | 0.35          | 0.09       | 0.36       | Cumple |        |
| Classacha al fas         | 2020                |          | N. D. (1)           | N.P. <sup>(1)</sup> | 0.0      | 20.0       | N.P. <sup>(1)</sup> | N.P. <sup>(1)</sup> | C      | 20.0          | G, S <sup>(3)</sup>    | Q S.                   | 2.69      | -0.07         | 0.91          | 0.37       | -0.09      | C      |        |
| Cimentación              | 30x30               | Arranque | N.P. <sup>(1)</sup> | N.P.(1)             | 0.8      | 20.0       | N.P.(1)             | N.P.                | Cumple | e 20.0        | G, S <sup>(6)</sup>    | N,M S.                 | 2.64      | -1.00         | 0.34          | 0.09       | 0.36       | Cumple |        |
| Notas:                   |                     |          |                     |                     |          |            |                     |                     |        |               |                        |                        |           |               |               |            |            |        |        |


# 4.5.3 COMPROBACIONES E.L.U. EN LOSA FORJADO 1

Según el CTE, la flecha máxima activa es de 1/500 de la luz correspondientes en este caso a 6,5 cm para la dirección X y 8 mm para la dirección Y.

Las flechas máximas obtenidas son 0,4 mm y 1,6 mm para dichos ejes, respectivamente.

#### 4.5.4 COMPROBACIÓN DE TENSIONES TRANSMITIDAS AL TERRENO

Según el Anejo nº9, la carga admisible del terreno del nivel geotécnico I sobre el que se cimentará la caseta de control es de 1 kg/cm². A continuación, se adjunta la planta de las tensiones transmitidas por la losa al terreno según el programa de cálculo utilizado.



# 5. ARQUETA DE BOMBEO PARA IMPULSIÓN DE ALIMENTACIÓN A 1ª ETAPA HAFSSV

El edificio de control se diseña como estructura de hormigón armada. La arqueta tiene unas dimensiones interiores en planta de 2,5 x 2,5 metros y alzados de 2,85 metros de los cuales 25 cm sobresalen del terreno. La arqueta se ha dotado de una losa de 25 cm de espesor sobresaliendo 10 cm de la cara exterior de los alzados.

# 5.1 ACCIONES

Para el dimensionamiento del armado no se ha tenido en cuenta el empuje hidrostático del agua en el interior de la arqueta, pero sí el empuje del terreno y la carga muerta del agua sobre la losa de cimentación. Se tendría así la situación más desfavorable.

<sup>(1)</sup> La comprobación no procede
(2) Debido a las características de aceleración sismica de la zona, no se realiza ninguna con
(3) PPC-MS-X0-3.5Y
(4) 1.35-PP+1.35-CM+1.05-Qa+1.5-V(+Xexc.-)
(3) PP+CM+0.3-Qa-0.3-SX-SY
(6) PP+CM-0.3-3-X-SY

<sup>(1)</sup> La comprobación no procesor (2) Debido a las caracteristicas de aceleración siss (3) PP+CM-SX-0.3-SY (4) 1.35-PP+1.35-CM+1.05-Qa+1.5-V(+Yexc.-) (5) PP+CM+0.3-SX-SY (6) PP+CM+0.3-Qa-SX-0.3-SY

Ja comprobación no procede
 Debido a las caracteristicas de aceleración si
 PP+CM+SX+0.3·SY
 1.35·PP+1.35·CM+1.05·Qa+1.5·V(-Xexc.-)
 PP+CM+0.3·Qa-0.3·SX-SY
 PP+CM-0.3·SX-SY





No se ha considerado viento al estar enterrada ni sismo.

#### 5.1.1 GRAVITATORIAS

| Planta      | S.C.U<br>(t/m²) | Cargas muertas<br>(t/m²) |
|-------------|-----------------|--------------------------|
| Forjado 1   | 0,10            | 0,20                     |
| Cimentación | 0,00            | 1,25                     |

#### 5.1.2 EMPUJES EN MUROS

• Carga: Cargas muertas

• Con relleno: Cota 2.60 m

Ángulo de talud 0.00 Grados

• Densidad aparente 1.85 t/m³

• Densidad sumergida 0.85 t/m³

• Ángulo rozamiento interno 23.20 Grados

#### 5.2 SITUACIONES DE PROYECTO

Para las distintas situaciones de proyecto, las combinaciones de acciones se definirán de acuerdo con los siguientes criterios:

- Situaciones persistentes o transitorias
  - Con coeficientes de combinación
  - Sin coeficientes de combinación
- Situaciones sísmicas
  - Con coeficientes de combinación

#### - Sin coeficientes de combinación

- Donde:
- G<sub>k</sub> Acción permanente
- Q<sub>k</sub> Acción variable
- A<sub>E</sub> Acción sísmica
- g<sub>G</sub> Coeficiente parcial de seguridad de las acciones permanentes
- $g_{0,1}$  Coeficiente parcial de seguridad de la acción variable principal
- $g_{0,i}$  Coeficiente parcial de seguridad de las acciones variables de acompañamiento
- g<sub>AE</sub> Coeficiente parcial de seguridad de la acción sísmica
- y<sub>p,1</sub> Coeficiente de combinación de la acción variable principal
- y<sub>a,i</sub> Coeficiente de combinación de las acciones variables de acompañamiento

#### 5.2.1 COEFICIENTES DE SEGURIDAD ADOPTADOS

#### 5.2.1.1 SOBRE LAS ACCIONES

Para cada situación de proyecto y estado límite los coeficientes a utilizar serán:

#### E.L.U. de rotura. Hormigón: EHE-08

| Persistente o transitoria                                                |           |              |                |                     |  |  |  |  |  |  |
|--------------------------------------------------------------------------|-----------|--------------|----------------|---------------------|--|--|--|--|--|--|
| Coeficientes parciales de seguridad (g)  Coeficientes de combinación (y) |           |              |                |                     |  |  |  |  |  |  |
|                                                                          | Favorable | Desfavorable | Principal (yp) | Acompañamiento (ya) |  |  |  |  |  |  |
| Carga permanente (G)                                                     | 1.000     | 1.350        | -              | -                   |  |  |  |  |  |  |
| Sobrecarga (Q)                                                           | 0.000     | 1.500        | 1.000          | 0.700               |  |  |  |  |  |  |
| Empujes del terreno (H)                                                  | 1.000     | 1.350        | -              | _                   |  |  |  |  |  |  |

#### E.L.U. de rotura. Hormigón en cimentaciones: EHE-08 / CTE DB-SE C

| Persistente o transitoria |                 |                          |                |                       |  |  |  |  |  |
|---------------------------|-----------------|--------------------------|----------------|-----------------------|--|--|--|--|--|
|                           | Coeficientes pa | rciales de seguridad (g) | Coeficient     | es de combinación (y) |  |  |  |  |  |
|                           | Favorable       | Desfavorable             | Principal (yp) | Acompañamiento (ya)   |  |  |  |  |  |
| Carga permanente (G)      | 1.000           | 1.600                    | -              | -                     |  |  |  |  |  |
| Sobrecarga (Q)            | 0.000           | 1.600                    | 1.000          | 0.700                 |  |  |  |  |  |
| Empujes del terreno (H)   | 1.000           | 1.600                    | -              | -                     |  |  |  |  |  |





#### Tensiones sobre el terreno

|                         |                 | Característica           |                |                        |
|-------------------------|-----------------|--------------------------|----------------|------------------------|
|                         | Coeficientes pa | rciales de seguridad (g) | Coeficient     | tes de combinación (y) |
|                         | Favorable       | Desfavorable             | Principal (yp) | Acompañamiento (ya)    |
| Carga permanente (G)    | 1.000           | 1.000                    | -              | -                      |
| Sobrecarga (Q)          | 0.000           | 1.000                    | 1.000          | 1.000                  |
| Empujes del terreno (H) | 1.000           | 1.000                    | -              | -                      |

#### Desplazamientos

| Característica          |                 |                          |                |                        |  |  |  |  |  |
|-------------------------|-----------------|--------------------------|----------------|------------------------|--|--|--|--|--|
|                         | Coeficientes pa | rciales de seguridad (g) | Coeficient     | tes de combinación (y) |  |  |  |  |  |
|                         | Favorable       | Desfavorable             | Principal (yp) | Acompañamiento (ya)    |  |  |  |  |  |
| Carga permanente (G)    | 1.000           | 1.000                    | -              | -                      |  |  |  |  |  |
| Sobrecarga (Q)          | 0.000           | 1.000                    | 1.000          | 1.000                  |  |  |  |  |  |
| Empujes del terreno (H) | 1.000           | 1.000                    | -              | -                      |  |  |  |  |  |

# 5.2.1.2 SOBRE LOS MATERIALES

Según EHE-08.

| Situación de proyecto     | Hormigón<br>Ye | Acero pasivo y activo |
|---------------------------|----------------|-----------------------|
| Persistente o transitoria | 1,5            | 1,15                  |
| Accidental                | 1,3            | 1,0                   |

# 5.2.2 COMBINACIÓN DE ACCIONES

# ■ Nombres de las hipótesis

PP Peso propio CM Cargas muertas Terreno Terreno

Qa Sobrecarga de uso

# ■ E.L.U. de rotura. Hormigón

| Comb. | PP    | CM    | Terreno | Qa    |
|-------|-------|-------|---------|-------|
| 1     | 1.000 | 1.000 | 1.000   |       |
| 2     | 1.350 | 1.350 | 1.000   |       |
| 3     | 1.000 | 1.000 | 1.000   | 1.500 |
| 4     | 1.350 | 1.350 | 1.000   | 1.500 |

| Comb. | PP    | PP CM Terreno |       | Qa    |
|-------|-------|---------------|-------|-------|
| 5     | 1.000 | 1.000         | 1.350 |       |
| 6     | 1.350 | 1.350         | 1.350 |       |
| 7     | 1.000 | 1.000         | 1.350 | 1.500 |
| 8     | 1.350 | 1.350         | 1.350 | 1.500 |

#### ■ E.L.U. de rotura. Hormigón en cimentaciones

| ĺ | Comb. | PP    | CM    | Terreno | Qa    |
|---|-------|-------|-------|---------|-------|
| ĺ | 1     | 1.000 | 1.000 | 1.000   |       |
| ĺ | 2     | 1.600 | 1.600 | 1.000   |       |
| ĺ | 3     | 1.000 | 1.000 | 1.000   | 1.600 |
| ĺ | 4     | 1.600 | 1.600 | 1.000   | 1.600 |
| Ì | 5     | 1.000 | 1.000 | 1.600   |       |
| ĺ | 6     | 1.600 | 1.600 | 1.600   |       |
| Ì | 7     | 1.000 | 1.000 | 1.600   | 1.600 |
| ĺ | 8     | 1.600 | 1.600 | 1.600   | 1.600 |

- Tensiones sobre el terreno
- Desplazamientos

| Comb. | PP    | CM Terreno |       | Qa    |
|-------|-------|------------|-------|-------|
| 1     | 1.000 | 1.000      | 1.000 |       |
| 2     | 1.000 | 1.000      | 1.000 | 1.000 |

# 5.3 DURABILIDAD

El recubrimiento de las armaduras de los depósitos de hormigón será igual a 4 cm. Se adjunta cuadro de la EHE-08.

|                                                      | Cemento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vida útil de<br>proyecto (t <sub>0</sub> ) | Clase general de exposición |      |      |                     |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------|------|------|---------------------|--|--|
| Homigon                                              | Cemento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (años)                                     | Illa                        | IIIb | Ilic | 1V<br>35<br>40<br>• |  |  |
| · X                                                  | CEM IIVA, CEM IIVB, CEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                         | 25                          | 30   | 35   | 35                  |  |  |
| Armado                                               | A-D u hormigón con<br>adición de micrositice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                        | 30                          | 35   | 40   | 40                  |  |  |
|                                                      | Resto de cementos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                         | 45                          | 40   |      |                     |  |  |
|                                                      | utilizables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                        | 65                          | 735  | *    | 1V<br>35            |  |  |
|                                                      | CEM IVA-D o bien con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                         | 30                          | 35   | 40   | 40                  |  |  |
|                                                      | Cemento pri  EM III/A, CEM II/B, CEM IV, CEM II/B-S, B-P, B-V, A-D u hormigón con adición de microsilice superior al RYL o de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                        | 35                          | 40   | 45   | 45                  |  |  |
| Armado N, Ci A-D adicio nue Pretensado Pretensado Pe | (100 to 100 to 1 | 50                                         | 65                          | 45   |      | *                   |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                        |                             |      |      |                     |  |  |





| -                      | Tipo de cemento  H CEM III  Otros tipos de cemento  F CEM I I/A-D  CEM III  Otros tipos de cementos o en el caso de empleo de adiciones al hormigón  Cualquiera  CEM III, CEM IV, CEM IVB-S, B-P, B-V, A-D u hormigón con adición de microsilice superior al 8% de cenizas volantes superior al 20% | Resistencia<br>característica del | Vida útil de proyecto<br>(t <sub>s</sub> ), (años) |     |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|-----|--|
| Clase de<br>exposición | Tipo de cemento                                                                                                                                                                                                                                                                                     | hormigón<br>[N/mm²]               | 50                                                 | 100 |  |
| Н                      | CEM III                                                                                                                                                                                                                                                                                             | 25 ≤ fox <40                      | 25                                                 | 50  |  |
|                        |                                                                                                                                                                                                                                                                                                     | fa ≥ 40                           | 15                                                 | 25  |  |
|                        | Otros tipos de cemento                                                                                                                                                                                                                                                                              | 25 ≤ f⇒ <40                       | 20                                                 | 35  |  |
|                        |                                                                                                                                                                                                                                                                                                     | f* ≥ 40                           | 10                                                 | 20  |  |
| F                      | CEM I VA-D                                                                                                                                                                                                                                                                                          | 25 ≤ fox <40                      | 25                                                 | 50  |  |
|                        | -                                                                                                                                                                                                                                                                                                   | f <sub>a</sub> ≥ 40               | 15                                                 | 35  |  |
|                        | CEM III                                                                                                                                                                                                                                                                                             | 25 ≤ f <sub>*</sub> <40           | 40                                                 | 75  |  |
|                        |                                                                                                                                                                                                                                                                                                     | f⇒ ≥ 40                           | 20                                                 | 40  |  |
|                        | Otros tipos de cementos o en el caso de empleo de                                                                                                                                                                                                                                                   | 25 ≤ fot <40                      | 20                                                 | 40  |  |
|                        | aucones a norrigon                                                                                                                                                                                                                                                                                  | f*≥40                             | 10                                                 | 20  |  |
| E (1)                  | Cualquiera                                                                                                                                                                                                                                                                                          | 25 ≤ fox <40                      | 40                                                 | 80  |  |
|                        |                                                                                                                                                                                                                                                                                                     | fa ≥ 40                           | 20                                                 | 35  |  |
| Qa                     | hormigón con adición de microsítice superior al 6% o                                                                                                                                                                                                                                                |                                   | 40                                                 | 55  |  |
|                        | Resto de cementos utilizables                                                                                                                                                                                                                                                                       | 8 3                               |                                                    |     |  |
| Qb, Qc                 | Cualquiera                                                                                                                                                                                                                                                                                          | 5                                 | (9)                                                | Ø   |  |

# 5.3.1 AMBIENTE. CLASES GENERAL Y ESPECÍFICA DE EXPOSICIÓN

Se ha propuesto para el caso de general de exposición previsto, un hormigón preparado para un ambiente IV, subclase Qb.

#### **5.3.2 CEMENTO**

# 5.3.2.1.1 TIPO DE CEMENTO

El cemento a utilizar será CEM II 42,5 SR.

# 5.3.2.1.2 MÁXIMA RELACIÓN AGUA/CEMENTO

La máxima relación agua/cemento será 0,5, para el ambiente seleccionado IV, subclase Qb. A continuación, se indica tabla extraída de la EHE-08, donde se indican las relaciones máximas según el tipo de ambiente, y el contenido mínimo en cemento.

#### 5.3.2.1.3 CONTENIDO MÍNIMO DE CEMENTO

Será de 350 kg/m<sup>3</sup>.

# 5.3.3 RESISTENCIA CARACTERÍSTICA MÍNIMA EXIGIDA AL HORMIGÓN

La resistencia característica será de 30 N/mm<sup>2</sup>.

# 5.3.4 NIVEL DE CONTROL DE LA EJECUCIÓN

El nivel de control será normal.

# 5.3.5 RECUBRIMIENTO

El recubrimiento será de 4 cm.

#### 5.3.6 IDONEIDAD DE LOS MATERIALES

El hormigón a utilizar será HA-30/P/20/IV-Qb y acero B-500-S.

# 5.4 CONDICIONANTES GEOTÉCNICOS

De acuerdo con los datos obtenidos del estudio geotécnico realizado no existirá problema alguno en la implantación enterrada de dicho tipo de arqueta con losa de cimentación.

# 5.5 RESULTADOS DEL CÁLCULO

A continuación, se adjunta los listados de cálculo obtenidos.

#### 5.5.1 ARMADO LOSA DE CIMENTACIÓN

Alineaciones longitudinales

Armadura Base Inferior: 1Ø12c/20 Armadura Base Superior: 1Ø12c/20

Canto: 25





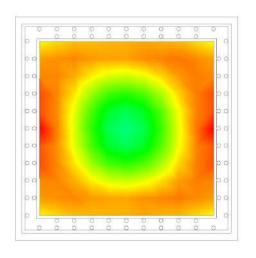
Alineaciones transversales

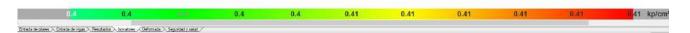
Armadura Base Inferior: 1Ø12c/20
Armadura Base Superior: 1Ø12c/20

Canto: 25

# 5.5.2 ARMADO DE MUROS

|           | Muro M1: Longitud: 275 cm |                   |            |                     |            |                      |       |                 |                 |       |        |  |  |  |
|-----------|---------------------------|-------------------|------------|---------------------|------------|----------------------|-------|-----------------|-----------------|-------|--------|--|--|--|
| Fancaar   |                           | Armadura vertical |            | Armadura horizontal |            | Armadura transversal |       |                 |                 | F.C.  |        |  |  |  |
| Planta    | Espesor<br>(cm)           | Izquierda         | Derecha    | Izquierda           | Derecha    | Ramas                | Diám. | Sep.ver<br>(cm) | Sep.hor<br>(cm) | (%)   | Estado |  |  |  |
| Forjado 1 | 25.0                      | Ø12c/30 cm        | Ø12c/30 cm | Ø12c/20 cm          | Ø12c/20 cm |                      |       |                 |                 | 100.0 |        |  |  |  |


|           | Muro M2: Longitud: 275 cm |                   |            |                     |            |                      |       |                 |                 |       |        |  |  |
|-----------|---------------------------|-------------------|------------|---------------------|------------|----------------------|-------|-----------------|-----------------|-------|--------|--|--|
| Eor       | Eanagar                   | Armadura vertical |            | Armadura horizontal |            | Armadura transversal |       |                 | F.C.            |       |        |  |  |
| Planta    | Espesor<br>(cm)           | Izquierda         | Derecha    | Izquierda           | Derecha    | Ramas                | Diám. | Sep.ver<br>(cm) | Sep.hor<br>(cm) | (%)   | Estado |  |  |
| Forjado 1 | 25.0                      | Ø12c/30 cm        | Ø12c/30 cm | Ø12c/20 cm          | Ø12c/20 cm |                      |       |                 |                 | 100.0 |        |  |  |


|           | Muro M3: Longitud: 275 cm |            |                        |            |            |       |                      |                 |                 |             |        |  |  |
|-----------|---------------------------|------------|------------------------|------------|------------|-------|----------------------|-----------------|-----------------|-------------|--------|--|--|
| Ecoco     | Eangaar                   | Armadura   | ra vertical Armadura h |            | horizontal |       | Armadura transversal |                 |                 | ΕC          |        |  |  |
| Planta    | Espesor<br>(cm)           | Izquierda  | Derecha                | Izquierda  | Derecha    | Ramas | Diám.                | Sep.ver<br>(cm) | Sep.hor<br>(cm) | F.C.<br>(%) | Estado |  |  |
| Forjado 1 | 25.0                      | Ø12c/30 cm | Ø12c/30 cm             | Ø12c/20 cm | Ø12c/20 cm |       |                      |                 |                 | 100.0       |        |  |  |

|           | Muro M4: Longitud: 275 cm |            |                                                            |            |            |       |       |              |                 |             |        |  |
|-----------|---------------------------|------------|------------------------------------------------------------|------------|------------|-------|-------|--------------|-----------------|-------------|--------|--|
| For       | Eangage                   | Armadura   | Armadura vertical Armadura horizontal Armadura transversal |            |            |       | ΕC    |              |                 |             |        |  |
| Planta    | Espesor<br>(cm)           | Izquierda  | Derecha                                                    | Izquierda  | Derecha    | Ramas | Diám. | Sep.ver (cm) | Sep.hor<br>(cm) | F.C.<br>(%) | Estado |  |
| Forjado 1 | 25.0                      | Ø12c/30 cm | Ø12c/30 cm                                                 | Ø12c/20 cm | Ø12c/20 cm |       |       |              |                 | 100.0       |        |  |

# 5.5.3 COMPROBACIÓN DE TENSIONES TRANSMITIDAS AL TERRENO

Según el Anejo nº9, la carga admisible del terreno del nivel geotécnico I sobre el que se cimentará la arqueta es de 1 kg/cm². A continuación, se adjunta la planta de las tensiones transmitidas por la losa al terreno según el programa de cálculo utilizado.





El Ejido, julio de 2020

Los Autores del Proyecto:

Constan las firmas